BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32589636)

  • 1. Transcriptional analysis for the difference in carotenoids accumulation in flesh and peel of white-fleshed loquat fruit.
    Zou S; Shahid MQ; Zhao C; Wang M; Bai Y; He Y; Lin S; Yang X
    PLoS One; 2020; 15(6):e0233631. PubMed ID: 32589636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastid structure and carotenogenic gene expression in red- and white-fleshed loquat (Eriobotrya japonica) fruits.
    Fu X; Kong W; Peng G; Zhou J; Azam M; Xu C; Grierson D; Chen K
    J Exp Bot; 2012 Jan; 63(1):341-54. PubMed ID: 21994170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic and transcriptional elucidation of the carotenoid biosynthesis pathway in peel and flesh tissue of loquat fruit during on-tree development.
    Hadjipieri M; Georgiadou EC; Marin A; Diaz-Mula HM; Goulas V; Fotopoulos V; Tomás-Barberán FA; Manganaris GA
    BMC Plant Biol; 2017 Jun; 17(1):102. PubMed ID: 28615062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya.
    Shen YH; Yang FY; Lu BG; Zhao WW; Jiang T; Feng L; Chen XJ; Ming R
    BMC Genomics; 2019 Jan; 20(1):49. PubMed ID: 30651061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of multiple phytoene synthase genes in tissue- and cultivar-specific accumulation of carotenoids in loquat.
    Fu X; Feng C; Wang C; Yin X; Lu P; Grierson D; Xu C; Chen K
    J Exp Bot; 2014 Aug; 65(16):4679-89. PubMed ID: 24935622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic Analyses of Fruit Cell Plastid Development in Loquat (
    Lu P; Wang R; Zhu C; Fu X; Wang S; Grierson D; Xu C
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30691226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carotenoids in white- and red-fleshed loquat fruits.
    Zhou CH; Xu CJ; Sun CD; Li X; Chen KS
    J Agric Food Chem; 2007 Sep; 55(19):7822-30. PubMed ID: 17708644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Transcriptional Analysis of Loquat Fruit Identifies Major Signal Networks Involved in Fruit Development and Ripening Process.
    Song H; Zhao X; Hu W; Wang X; Shen T; Yang L
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27827928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethylene biosynthesis and perception during ripening of loquat fruit (Eriobotrya japonica Lindl.).
    Alos E; Martinez-Fuentes A; Reig C; Mesejo C; Rodrigo MJ; Agustí M; Zacarías L
    J Plant Physiol; 2017 Mar; 210():64-71. PubMed ID: 28088087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome regulation of carotenoids in five flesh-colored watermelons (Citrullus lanatus).
    Yuan P; Umer MJ; He N; Zhao S; Lu X; Zhu H; Gong C; Diao W; Gebremeskel H; Kuang H; Liu W
    BMC Plant Biol; 2021 Apr; 21(1):203. PubMed ID: 33910512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Color Formation in Yellow-Fleshed Kiwifruit.
    Xiong Y; He J; Li M; Du K; Lang H; Gao P; Xie Y
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Identification and Expression Analysis of the SBP-Box Gene Family in Loquat Fruit Development.
    Song H; Zhao K; Jiang G; Sun S; Li J; Tu M; Wang L; Xie H; Chen D
    Genes (Basel); 2023 Dec; 15(1):. PubMed ID: 38254913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of cDNAs associated with lignification and their expression profiles in loquat fruit with different lignin accumulation.
    Shan LL; Li X; Wang P; Cai C; Zhang B; Sun CD; Zhang WS; Xu CJ; Ferguson I; Chen KS
    Planta; 2008 May; 227(6):1243-54. PubMed ID: 18273642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of a Chromoplast-Specific Lycopene β-Cyclase Gene (
    Hong M; Chi ZH; Wang YQ; Tang YM; Deng QX; He MY; Wang RK; He YZ
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31847172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptome profiling of freezing stress responses in loquat (Eriobotrya japonica) fruitlets.
    Xu HX; Li XY; Chen JW
    J Plant Res; 2017 Sep; 130(5):893-907. PubMed ID: 28447204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated Metabolome and Transcriptome Analysis Unveils Novel Pathway Involved in the Formation of Yellow Peel in Cucumber.
    Chen C; Zhou G; Chen J; Liu X; Lu X; Chen H; Tian Y
    Int J Mol Sci; 2021 Feb; 22(3):. PubMed ID: 33540857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptome analysis reveals key genes potentially related to organic acid and sugar accumulation in loquat.
    Yang J; Zhang J; Niu XQ; Zheng XL; Chen X; Zheng GH; Wu JC
    PLoS One; 2021; 16(4):e0238873. PubMed ID: 33914776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in carotenoid profiles and in the expression pattern of the genes in carotenoid metabolisms during fruit development and ripening in four watermelon cultivars.
    Lv P; Li N; Liu H; Gu H; Zhao WE
    Food Chem; 2015 May; 174():52-9. PubMed ID: 25529651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activator- and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway.
    Xu Q; Yin XR; Zeng JK; Ge H; Song M; Xu CJ; Li X; Ferguson IB; Chen KS
    J Exp Bot; 2014 Aug; 65(15):4349-59. PubMed ID: 24860186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit.
    Pareek S; Benkeblia N; Janick J; Cao S; Yahia EM
    J Sci Food Agric; 2014 Jun; 94(8):1495-1504. PubMed ID: 24395491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.