These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 32589636)
1. Transcriptional analysis for the difference in carotenoids accumulation in flesh and peel of white-fleshed loquat fruit. Zou S; Shahid MQ; Zhao C; Wang M; Bai Y; He Y; Lin S; Yang X PLoS One; 2020; 15(6):e0233631. PubMed ID: 32589636 [TBL] [Abstract][Full Text] [Related]
2. Plastid structure and carotenogenic gene expression in red- and white-fleshed loquat (Eriobotrya japonica) fruits. Fu X; Kong W; Peng G; Zhou J; Azam M; Xu C; Grierson D; Chen K J Exp Bot; 2012 Jan; 63(1):341-54. PubMed ID: 21994170 [TBL] [Abstract][Full Text] [Related]
3. Metabolic and transcriptional elucidation of the carotenoid biosynthesis pathway in peel and flesh tissue of loquat fruit during on-tree development. Hadjipieri M; Georgiadou EC; Marin A; Diaz-Mula HM; Goulas V; Fotopoulos V; Tomás-Barberán FA; Manganaris GA BMC Plant Biol; 2017 Jun; 17(1):102. PubMed ID: 28615062 [TBL] [Abstract][Full Text] [Related]
4. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya. Shen YH; Yang FY; Lu BG; Zhao WW; Jiang T; Feng L; Chen XJ; Ming R BMC Genomics; 2019 Jan; 20(1):49. PubMed ID: 30651061 [TBL] [Abstract][Full Text] [Related]
5. Involvement of multiple phytoene synthase genes in tissue- and cultivar-specific accumulation of carotenoids in loquat. Fu X; Feng C; Wang C; Yin X; Lu P; Grierson D; Xu C; Chen K J Exp Bot; 2014 Aug; 65(16):4679-89. PubMed ID: 24935622 [TBL] [Abstract][Full Text] [Related]
6. Microscopic Analyses of Fruit Cell Plastid Development in Loquat ( Lu P; Wang R; Zhu C; Fu X; Wang S; Grierson D; Xu C Molecules; 2019 Jan; 24(3):. PubMed ID: 30691226 [TBL] [Abstract][Full Text] [Related]
7. Carotenoids in white- and red-fleshed loquat fruits. Zhou CH; Xu CJ; Sun CD; Li X; Chen KS J Agric Food Chem; 2007 Sep; 55(19):7822-30. PubMed ID: 17708644 [TBL] [Abstract][Full Text] [Related]
8. Comparative Transcriptional Analysis of Loquat Fruit Identifies Major Signal Networks Involved in Fruit Development and Ripening Process. Song H; Zhao X; Hu W; Wang X; Shen T; Yang L Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27827928 [TBL] [Abstract][Full Text] [Related]
9. Ethylene biosynthesis and perception during ripening of loquat fruit (Eriobotrya japonica Lindl.). Alos E; Martinez-Fuentes A; Reig C; Mesejo C; Rodrigo MJ; Agustí M; Zacarías L J Plant Physiol; 2017 Mar; 210():64-71. PubMed ID: 28088087 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome regulation of carotenoids in five flesh-colored watermelons (Citrullus lanatus). Yuan P; Umer MJ; He N; Zhao S; Lu X; Zhu H; Gong C; Diao W; Gebremeskel H; Kuang H; Liu W BMC Plant Biol; 2021 Apr; 21(1):203. PubMed ID: 33910512 [TBL] [Abstract][Full Text] [Related]
11. Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Color Formation in Yellow-Fleshed Kiwifruit. Xiong Y; He J; Li M; Du K; Lang H; Gao P; Xie Y Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675098 [TBL] [Abstract][Full Text] [Related]
12. Genome-Wide Identification and Expression Analysis of the SBP-Box Gene Family in Loquat Fruit Development. Song H; Zhao K; Jiang G; Sun S; Li J; Tu M; Wang L; Xie H; Chen D Genes (Basel); 2023 Dec; 15(1):. PubMed ID: 38254913 [TBL] [Abstract][Full Text] [Related]
13. Characterization of cDNAs associated with lignification and their expression profiles in loquat fruit with different lignin accumulation. Shan LL; Li X; Wang P; Cai C; Zhang B; Sun CD; Zhang WS; Xu CJ; Ferguson I; Chen KS Planta; 2008 May; 227(6):1243-54. PubMed ID: 18273642 [TBL] [Abstract][Full Text] [Related]
15. Integrated Metabolome and Transcriptome Analysis Unveils Novel Pathway Involved in the Formation of Yellow Peel in Cucumber. Chen C; Zhou G; Chen J; Liu X; Lu X; Chen H; Tian Y Int J Mol Sci; 2021 Feb; 22(3):. PubMed ID: 33540857 [TBL] [Abstract][Full Text] [Related]
16. Comparative transcriptome analysis reveals key genes potentially related to organic acid and sugar accumulation in loquat. Yang J; Zhang J; Niu XQ; Zheng XL; Chen X; Zheng GH; Wu JC PLoS One; 2021; 16(4):e0238873. PubMed ID: 33914776 [TBL] [Abstract][Full Text] [Related]
17. Changes in carotenoid profiles and in the expression pattern of the genes in carotenoid metabolisms during fruit development and ripening in four watermelon cultivars. Lv P; Li N; Liu H; Gu H; Zhao WE Food Chem; 2015 May; 174():52-9. PubMed ID: 25529651 [TBL] [Abstract][Full Text] [Related]
18. Expression of a Chromoplast-Specific Lycopene β-Cyclase Gene ( Hong M; Chi ZH; Wang YQ; Tang YM; Deng QX; He MY; Wang RK; He YZ Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31847172 [TBL] [Abstract][Full Text] [Related]
19. Activator- and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway. Xu Q; Yin XR; Zeng JK; Ge H; Song M; Xu CJ; Li X; Ferguson IB; Chen KS J Exp Bot; 2014 Aug; 65(15):4349-59. PubMed ID: 24860186 [TBL] [Abstract][Full Text] [Related]
20. Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit. Pareek S; Benkeblia N; Janick J; Cao S; Yahia EM J Sci Food Agric; 2014 Jun; 94(8):1495-1504. PubMed ID: 24395491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]