These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32589845)

  • 1. Self-Powered Plastron Preservation and One-Step Molding of Semiactive Superhydrophobic Surfaces.
    Xu M; Liu CT; Kim CJ
    Langmuir; 2020 Jul; 36(28):8193-8198. PubMed ID: 32589845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction.
    Lee C; Kim CJ
    Phys Rev Lett; 2011 Jan; 106(1):014502. PubMed ID: 21231747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastron Regeneration on Submerged Superhydrophobic Surfaces Using In Situ Gas Generation by Chemical Reaction.
    Panchanathan D; Rajappan A; Varanasi KK; McKinley GH
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33684-33692. PubMed ID: 30184437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Driven Gas Spreading on Mesh Surfaces for Regeneration of Underwater Superhydrophobicity.
    Wang J; Liu Y
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 39034615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete Electrolytic Plastron Recovery in a Low Drag Superhydrophobic Surface.
    Lloyd BP; Bartlett PN; Wood RJK
    ACS Omega; 2021 Feb; 6(5):3483-3489. PubMed ID: 33644523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Second-Level Microgroove Convexity is Critical for Air Plastron Restoration on Immersed Hierarchical Superhydrophobic Surfaces.
    Han X; Liu J; Wang M; Upmanyu M; Wang H
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52524-52534. PubMed ID: 36373889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brightness of Microtrench Superhydrophobic Surfaces and Visual Detection of Intermediate Wetting States.
    Yu N; Kiani S; Xu M; Kim CC
    Langmuir; 2021 Jan; 37(3):1206-1214. PubMed ID: 33428410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic air layer on textured superhydrophobic surfaces.
    Vakarelski IU; Chan DY; Marston JO; Thoroddsen ST
    Langmuir; 2013 Sep; 29(35):11074-81. PubMed ID: 23919719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability.
    Lee BJ; Zhang Z; Baek S; Kim S; Kim D; Yong K
    Sci Rep; 2016 Apr; 6():24653. PubMed ID: 27095674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metastable underwater superhydrophobicity.
    Poetes R; Holtzmann K; Franze K; Steiner U
    Phys Rev Lett; 2010 Oct; 105(16):166104. PubMed ID: 21230986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive Anti-Flooding Superhydrophobic Surfaces.
    Seo D; Shim J; Moon B; Lee K; Lee J; Lee C; Nam Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4068-4080. PubMed ID: 31891474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infinite lifetime of underwater superhydrophobic states.
    Xu M; Sun G; Kim CJ
    Phys Rev Lett; 2014 Sep; 113(13):136103. PubMed ID: 25302907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic, self-cleaning surface with stable superhydrophobic properties: printed polydimethylsiloxane (PDMS) arrays embedded with TiO2 nanoparticles.
    Zhao Y; Liu Y; Xu Q; Barahman M; Lyons AM
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2632-40. PubMed ID: 25525836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Dimensional Analysis of Air-Water Interface on Superhydrophobic Grooves under Fluctuating Water Pressure.
    Piao L; Park H
    Langmuir; 2015 Jul; 31(29):8022-32. PubMed ID: 26135133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing.
    Seo D; Lee C; Nam Y
    Langmuir; 2014 Dec; 30(51):15468-76. PubMed ID: 25466626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salvinia-Effect-Inspired "Sticky" Superhydrophobic Surfaces by Meniscus-Confined Electrodeposition.
    Zheng D; Jiang Y; Yu W; Jiang X; Zhao X; Choi CH; Sun G
    Langmuir; 2017 Nov; 33(47):13640-13648. PubMed ID: 29096056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marine antifouling from thin air.
    Arnott J; Wu AH; Vucko MJ; Lamb RN
    Biofouling; 2014 Oct; 30(9):1045-54. PubMed ID: 25329518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on the mechanical and thermodynamic robustness of superhydrophobic surfaces.
    Scarratt LRJ; Steiner U; Neto C
    Adv Colloid Interface Sci; 2017 Aug; 246():133-152. PubMed ID: 28577754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Anti-Biofouling Properties of Superhydrophobic Surfaces are Short-Lived.
    Hwang GB; Page K; Patir A; Nair SP; Allan E; Parkin IP
    ACS Nano; 2018 Jun; 12(6):6050-6058. PubMed ID: 29792802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Gas Transportation Using Bioinspired Superhydrophobic Yarn as the Gas-Siphon Underwater.
    Zhang X; Dong Y; He Z; Gong H; Xu X; Zhao M; Qin H
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18174-18181. PubMed ID: 32202403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.