These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 32590095)
1. Bio-synthesized iron oxide nanoparticles for cancer treatment. Alphandéry E Int J Pharm; 2020 Aug; 586():119472. PubMed ID: 32590095 [TBL] [Abstract][Full Text] [Related]
2. Development of non-pyrogenic magnetosome minerals coated with poly-l-lysine leading to full disappearance of intracranial U87-Luc glioblastoma in 100% of treated mice using magnetic hyperthermia. Alphandéry E; Idbaih A; Adam C; Delattre JY; Schmitt C; Guyot F; Chebbi I Biomaterials; 2017 Oct; 141():210-222. PubMed ID: 28689117 [TBL] [Abstract][Full Text] [Related]
3. Biodegraded magnetosomes with reduced size and heating power maintain a persistent activity against intracranial U87-Luc mouse GBM tumors. Alphandéry E; Idbaih A; Adam C; Delattre JY; Schmitt C; Gazeau F; Guyot F; Chebbi I J Nanobiotechnology; 2019 Dec; 17(1):126. PubMed ID: 31870376 [TBL] [Abstract][Full Text] [Related]
4. Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma. Le Fèvre R; Durand-Dubief M; Chebbi I; Mandawala C; Lagroix F; Valet JP; Idbaih A; Adam C; Delattre JY; Schmitt C; Maake C; Guyot F; Alphandéry E Theranostics; 2017; 7(18):4618-4631. PubMed ID: 29158849 [TBL] [Abstract][Full Text] [Related]
5. Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field. Hamdous Y; Chebbi I; Mandawala C; Le Fèvre R; Guyot F; Seksek O; Alphandéry E J Nanobiotechnology; 2017 Oct; 15(1):74. PubMed ID: 29041937 [TBL] [Abstract][Full Text] [Related]
6. Natural Metallic Nanoparticles for Application in Nano-Oncology. Alphandéry E Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575884 [TBL] [Abstract][Full Text] [Related]
7. Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field. Alphandéry E; Idbaih A; Adam C; Delattre JY; Schmitt C; Guyot F; Chebbi I J Control Release; 2017 Sep; 262():259-272. PubMed ID: 28713041 [TBL] [Abstract][Full Text] [Related]
8. Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease. Alphandéry E Nanotoxicology; 2019 Jun; 13(5):573-596. PubMed ID: 30938215 [TBL] [Abstract][Full Text] [Related]
9. Biocompatible and stable magnetosome minerals coated with poly-l-lysine, citric acid, oleic acid, and carboxy-methyl-dextran for application in the magnetic hyperthermia treatment of tumors. Mandawala C; Chebbi I; Durand-Dubief M; Le Fèvre R; Hamdous Y; Guyot F; Alphandéry E J Mater Chem B; 2017 Sep; 5(36):7644-7660. PubMed ID: 32264239 [TBL] [Abstract][Full Text] [Related]
10. Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. Alphandéry E; Guyot F; Chebbi I Int J Pharm; 2012 Sep; 434(1-2):444-52. PubMed ID: 22698862 [TBL] [Abstract][Full Text] [Related]
11. Applications of magnetotactic bacteria and magnetosome for cancer treatment: A review emphasizing on practical and mechanistic aspects. Alphandéry E Drug Discov Today; 2020 Aug; 25(8):1444-1452. PubMed ID: 32561298 [TBL] [Abstract][Full Text] [Related]
12. Stable pharmaceutical composition of cryo-protected non-pyrogenic isotonic chains of magnetosomes for efficient tumor cell destruction at 45 ± 1 °C under alternating magnetic field or ultrasound application. Nguyen TN; Chebbi I; Le Fèvre R; Guyot F; Alphandéry E Nanoscale; 2024 Oct; 16(40):18984-18997. PubMed ID: 39297787 [TBL] [Abstract][Full Text] [Related]
15. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model. Rego GNA; Mamani JB; Souza TKF; Nucci MP; Silva HRD; Gamarra LF Einstein (Sao Paulo); 2019 Aug; 17(4):eAO4786. PubMed ID: 31390427 [TBL] [Abstract][Full Text] [Related]
16. Alternating magnetic field-induced hyperthermia increases iron oxide nanoparticle cell association/uptake and flux in blood-brain barrier models. Dan M; Bae Y; Pittman TA; Yokel RA Pharm Res; 2015 May; 32(5):1615-25. PubMed ID: 25377069 [TBL] [Abstract][Full Text] [Related]
17. Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. Low LE; Lim HP; Ong YS; Siva SP; Sia CS; Goh BH; Chan ES; Tey BT J Control Release; 2022 May; 345():231-274. PubMed ID: 35306119 [TBL] [Abstract][Full Text] [Related]
18. Smart Magnetotactic Bacteria Enable the Inhibition of Neuroblastoma under an Alternating Magnetic Field. Chen C; Wang P; Chen H; Wang X; Halgamuge MN; Chen C; Song T ACS Appl Mater Interfaces; 2022 Mar; 14(12):14049-14058. PubMed ID: 35311270 [TBL] [Abstract][Full Text] [Related]
19. A Comparative Study of Receptor-Targeted Magnetosome and HSA-Coated Iron Oxide Nanoparticles as MRI Contrast-Enhancing Agent in Animal Cancer Model. Erdal E; Demirbilek M; Yeh Y; Akbal Ö; Ruff L; Bozkurt D; Cabuk A; Senel Y; Gumuskaya B; Algın O; Colak S; Esener S; Denkbas EB Appl Biochem Biotechnol; 2018 May; 185(1):91-113. PubMed ID: 29082480 [TBL] [Abstract][Full Text] [Related]
20. Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Alphandéry E Front Bioeng Biotechnol; 2014; 2():5. PubMed ID: 25152880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]