BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 32590336)

  • 1. The immune tumour microenvironment of neuroendocrine tumours and its implications for immune checkpoint inhibitors.
    Takkenkamp TJ; Jalving M; Hoogwater FJH; Walenkamp AME
    Endocr Relat Cancer; 2020 Sep; 27(9):R329-R343. PubMed ID: 32590336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroendocrine tumours and their microenvironment.
    de Hosson LD; Takkenkamp TJ; Kats-Ugurlu G; Bouma G; Bulthuis M; de Vries EGE; van Faassen M; Kema IP; Walenkamp AME
    Cancer Immunol Immunother; 2020 Aug; 69(8):1449-1459. PubMed ID: 32270230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viral status, immune microenvironment and immunological response to checkpoint inhibitors in hepatocellular carcinoma.
    Ho WJ; Danilova L; Lim SJ; Verma R; Xavier S; Leatherman JM; Sztein MB; Fertig EJ; Wang H; Jaffee E; Yarchoan M
    J Immunother Cancer; 2020 Apr; 8(1):. PubMed ID: 32303615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of immune microenvironment in gastrointestinal stromal tumours.
    Blakely AM; Matoso A; Patil PA; Taliano R; Machan JT; Miner TJ; Lombardo KA; Resnick MB; Wang LJ
    Histopathology; 2018 Feb; 72(3):405-413. PubMed ID: 28871595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance.
    Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX
    Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunotherapy and potential predictive biomarkers in the treatmentĀ of neuroendocrine neoplasia.
    Xu G; Wang Y; Zhang H; She X; Yang J
    Future Oncol; 2021 Mar; 17(9):1069-1081. PubMed ID: 33136448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperthermia Targeting the Tumor Microenvironment Facilitates Immune Checkpoint Inhibitors.
    Li Z; Deng J; Sun J; Ma Y
    Front Immunol; 2020; 11():595207. PubMed ID: 33240283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indoleamine 2,3-Dioxygenase Activity-Induced Acceleration of Tumor Growth, and Protein Kinases-Related Novel Therapeutics Regimens.
    Engin AB; Engin A
    Adv Exp Med Biol; 2021; 1275():339-356. PubMed ID: 33539022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by L-Kynurenine.
    Campesato LF; Budhu S; Tchaicha J; Weng CH; Gigoux M; Cohen IJ; Redmond D; Mangarin L; Pourpe S; Liu C; Zappasodi R; Zamarin D; Cavanaugh J; Castro AC; Manfredi MG; McGovern K; Merghoub T; Wolchok JD
    Nat Commun; 2020 Aug; 11(1):4011. PubMed ID: 32782249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune checkpoint inhibitors in HCC: Cellular, molecular and systemic data.
    Harkus U; Wankell M; Palamuthusingam P; McFarlane C; Hebbard L
    Semin Cancer Biol; 2022 Nov; 86(Pt 3):799-815. PubMed ID: 35065242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines.
    Oladejo M; Paulishak W; Wood L
    Semin Cancer Biol; 2023 Jan; 88():81-95. PubMed ID: 36526110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors.
    Hou A; Hou K; Huang Q; Lei Y; Chen W
    Front Immunol; 2020; 11():783. PubMed ID: 32508809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroendocrine subtypes of small cell lung cancer differ in terms of immune microenvironment and checkpoint molecule distribution.
    Dora D; Rivard C; Yu H; Bunn P; Suda K; Ren S; Lueke Pickard S; Laszlo V; Harko T; Megyesfalvi Z; Moldvay J; Hirsch FR; Dome B; Lohinai Z
    Mol Oncol; 2020 Sep; 14(9):1947-1965. PubMed ID: 32506804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation Patterns Among B7 Family Ligands and Tryptophan Degrading Enzymes in Hepatocellular Carcinoma.
    Chinnadurai R; Scandolara R; Alese OB; Arafat D; Ravindranathan D; Farris AB; El-Rayes BF; Gibson G
    Front Oncol; 2020; 10():1632. PubMed ID: 33014820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of tryptophan metabolism in cancers and therapeutic implications.
    Liu XH; Zhai XY
    Biochimie; 2021 Mar; 182():131-139. PubMed ID: 33460767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of immune checkpoint inhibitor monotherapy or combined with other small molecule-targeted agents in ovarian cancer.
    Muaibati M; Abuduyilimu A; Zhang T; Dai Y; Li R; Huang F; Li K; Tong Q; Huang X; Zhuang L
    Expert Rev Mol Med; 2023 Jan; 25():e6. PubMed ID: 36691778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immuno-Metabolism and Microenvironment in Cancer: Key Players for Immunotherapy.
    Giannone G; Ghisoni E; Genta S; Scotto G; Tuninetti V; Turinetto M; Valabrega G
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunotherapy in Neuroendocrine Neoplasms: Where Are We Now?
    Fazio N; Abdel-Rahman O
    Curr Treat Options Oncol; 2021 Feb; 22(3):19. PubMed ID: 33559013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer Immunotherapies: From Efficacy to Resistance Mechanisms - Not Only Checkpoint Matters.
    Wang S; Xie K; Liu T
    Front Immunol; 2021; 12():690112. PubMed ID: 34367148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiotherapy, immunotherapy, and the tumour microenvironment: Turning an immunosuppressive milieu into a therapeutic opportunity.
    Donlon NE; Power R; Hayes C; Reynolds JV; Lysaght J
    Cancer Lett; 2021 Apr; 502():84-96. PubMed ID: 33450360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.