These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32591224)

  • 21. Bioconversion of ginsenosides Rb(1), Rb(2), Rc and Rd by novel β-glucosidase hydrolyzing outer 3-O glycoside from Sphingomonas sp. 2F2: cloning, expression, and enzyme characterization.
    Wang L; Liu QM; Sung BH; An DS; Lee HG; Kim SG; Kim SC; Lee ST; Im WT
    J Biotechnol; 2011 Nov; 156(2):125-33. PubMed ID: 21906640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of γ-cyclodextrin by Bacillus cereus cyclodextrin glycosyltransferase using extractive bioconversion in polymer-salt aqueous two-phase system.
    Lin YK; Show PL; Yap YJ; Ariff AB; Mohammad Annuar MS; Lai OM; Tang TK; Juan JC; Ling TC
    J Biosci Bioeng; 2016 Jun; 121(6):692-696. PubMed ID: 26702953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial transformation of ginsenoside Rg3 to ginsenoside Rh2 by Esteya vermicola CNU 120806.
    Hou J; Xue J; Wang C; Liu L; Zhang D; Wang Z; Li W; Zheng Y; Sung C
    World J Microbiol Biotechnol; 2012 Apr; 28(4):1807-11. PubMed ID: 22805964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extractive bioconversion of cyclodextrins by Bacillus cereus cyclodextrin glycosyltransferase in aqueous two-phase system.
    Ng HS; Ooi CW; Mokhtar MN; Show PL; Ariff A; Tan JS; Ng EP; Ling TC
    Bioresour Technol; 2013 Aug; 142():723-6. PubMed ID: 23806510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic transformation of ginsenosides Re, Rg1, and Rf to ginsenosides Rg2 and aglycon PPT by using β-glucosidase from Thermotoga neapolitana.
    Bi YF; Wang XZ; Jiang S; Liu JS; Zheng MZ; Chen P
    Biotechnol Lett; 2019 May; 41(4-5):613-623. PubMed ID: 30968346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Green extraction of apigenin and luteolin from celery seed using deep eutectic solvent.
    Hang NT; Thi Tu Uyen T; Van Phuong N
    J Pharm Biomed Anal; 2022 Jan; 207():114406. PubMed ID: 34653746
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression and characterization of a Ca(2+) activated thermostable β-glucosidase with high ginsenoside Rb1 to ginsenoside 20(S)-Rg3 bioconversion productivity.
    Xie J; Zhao D; Zhao L; Pei J; Xiao W; Ding G; Wang Z
    J Ind Microbiol Biotechnol; 2015 Jun; 42(6):839-50. PubMed ID: 25838236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification and characterization of a novel and unique ginsenoside Rg1-hydrolyzing β-D-glucosidase from Penicillium sclerotiorum.
    Wei Y; Zhao W; Zhang Q; Zhao Y; Zhang Y
    Acta Biochim Biophys Sin (Shanghai); 2011 Mar; 43(3):226-31. PubMed ID: 21297118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polyalcohols as Hydrogen-Bonding Donors in Choline Chloride-Based Deep Eutectic Solvents for Extraction of Xanthones from the Pericarp of
    Mulia K; Fauzia F; Krisanti EA
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30759720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and properties of a novel beta-glucosidase, hydrolyzing ginsenoside Rb1 to CK, from Paecilomyces Bainier.
    Yan Q; Zhou XW; Zhou W; Li XW; Feng MQ; Zhou P
    J Microbiol Biotechnol; 2008 Jun; 18(6):1081-9. PubMed ID: 18600051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient extraction of proanthocyanidin from Ginkgo biloba leaves employing rationally designed deep eutectic solvent-water mixture and evaluation of the antioxidant activity.
    Cao J; Chen L; Li M; Cao F; Zhao L; Su E
    J Pharm Biomed Anal; 2018 Sep; 158():317-326. PubMed ID: 29913356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-density immobilization of a ginsenoside-transforming β-glucosidase for enhanced food-grade production of minor ginsenosides.
    Cui CH; Jeon BM; Fu Y; Im WT; Kim SC
    Appl Microbiol Biotechnol; 2019 Sep; 103(17):7003-7015. PubMed ID: 31289903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of a novel recombinant β-glucosidase from Sphingopyxis alaskensis that specifically hydrolyzes the outer glucose at the C-3 position in protopanaxadiol-type ginsenosides.
    Shin KC; Oh DK
    J Biotechnol; 2014 Feb; 172():30-7. PubMed ID: 24333127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cooperated biotransformation of ginsenoside extracts into ginsenoside 20(S)-Rg3 by three thermostable glycosidases.
    Zhang S; Luo J; Xie J; Wang Z; Xiao W; Zhao L
    J Appl Microbiol; 2020 Mar; 128(3):721-734. PubMed ID: 31715079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse.
    Li AL; Hou XD; Lin KP; Zhang X; Fu MH
    J Biosci Bioeng; 2018 Sep; 126(3):346-354. PubMed ID: 29657125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pressurized aqueous solutions of deep eutectic solvent (DES): A green emergent extraction of anthocyanins from a Brazilian berry processing by-product.
    Benvenutti L; Zielinski AAF; Ferreira SRS
    Food Chem X; 2022 Mar; 13():100236. PubMed ID: 35498972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative analysis of the expression level of recombinant ginsenoside-transforming β-glucosidase in GRAS hosts and mass production of the ginsenoside Rh2-Mix.
    Siddiqi MZ; Cui CH; Park SK; Han NS; Kim SC; Im WT
    PLoS One; 2017; 12(4):e0176098. PubMed ID: 28423055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amano Lipase PS-catalyzed Hydrolysis of Pine Nut Oil for the Fatty Acids Production Using Deep Eutectic Solvent as Co-solvent.
    Yang G; Tong T; Yang Y; Liu W; Wang X
    J Oleo Sci; 2019 Oct; 68(10):977-988. PubMed ID: 31511464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extraction of weak hydrophobic sulforaphane from broccoli by salting-out assisted hydrophobic deep eutectic solvent extraction.
    Deng WW; Mei XP; Cheng ZJ; Gan TX; Tian X; Hu JN; Zang CR; Sun B; Wu J; Deng Y; Ghiladi RA; Lorimer GH; Keceli G; Wang J
    Food Chem; 2023 Mar; 405(Pt A):134817. PubMed ID: 36370577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids.
    Mohebbi A; Yaripour S; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2018 Oct; 1571():84-93. PubMed ID: 30119972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.