BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 32591376)

  • 21. Context-dependent effects of glucocorticoids on the lizard gut microbiome.
    MacLeod KJ; Kohl KD; Trevelline BK; Langkilde T
    Mol Ecol; 2022 Jan; 31(1):185-196. PubMed ID: 34661319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological and microbial adjustments to diet quality permit facultative herbivory in an omnivorous lizard.
    Kohl KD; Brun A; Magallanes M; Brinkerhoff J; Laspiur A; Acosta JC; Bordenstein SR; Caviedes-Vidal E
    J Exp Biol; 2016 Jun; 219(Pt 12):1903-12. PubMed ID: 27307545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gut Microbiota of
    Jaramillo A; Castañeda LE
    Front Microbiol; 2021; 12():654108. PubMed ID: 34025608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gut microbiota differs between two cold-climate lizards distributed in thermally different regions.
    Chen JQ; Zhang LW; Zhao RM; Wu HX; Lin LH; Li P; Li H; Qu YF; Ji X
    BMC Ecol Evol; 2022 Oct; 22(1):120. PubMed ID: 36271355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hotter nests produce hatchling lizards with lower thermal tolerance.
    Dayananda B; Murray BR; Webb JK
    J Exp Biol; 2017 Jun; 220(Pt 12):2159-2165. PubMed ID: 28615488
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intraspecific variation in lizard heat tolerance alters estimates of climate impact.
    Herrando-Pérez S; Ferri-Yáñez F; Monasterio C; Beukema W; Gomes V; Belliure J; Chown SL; Vieites DR; Araújo MB
    J Anim Ecol; 2019 Feb; 88(2):247-257. PubMed ID: 30303530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plastic rates of development and the effect of thermal extremes on offspring fitness in a cold-climate viviparous lizard.
    Cunningham GD; Fitzpatrick LJ; While GM; Wapstra E
    J Exp Zool A Ecol Integr Physiol; 2018 Apr; 329(4-5):262-270. PubMed ID: 29791071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ectotherm heat tolerance and the microbiome: current understanding, future directions and potential applications.
    Fontaine SS; Kohl KD
    J Exp Biol; 2023 Jun; 226(12):. PubMed ID: 37313684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina.
    Kubisch EL; Fernández JB; Ibargüengoytía NR
    J Comp Physiol B; 2016 Feb; 186(2):243-53. PubMed ID: 26679700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Body size impacts critical thermal maximum measurements in lizards.
    Claunch NM; Nix E; Royal AE; Burgos LP; Corn M; DuBois PM; Ivey KN; King EC; Rucker KA; Shea TK; Stepanek J; Vansdadia S; Taylor EN
    J Exp Zool A Ecol Integr Physiol; 2021 Jan; 335(1):96-107. PubMed ID: 32851814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Captivity Influences Gut Microbiota in Crocodile Lizards (
    Tang GS; Liang XX; Yang MY; Wang TT; Chen JP; Du WG; Li H; Sun BJ
    Front Microbiol; 2020; 11():550. PubMed ID: 32390955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasticity of Gene Expression and Thermal Tolerance: Implications for Climate Change Vulnerability in a Tropical Forest Lizard.
    Rosso AA; Casement B; Chung AK; Curlis JD; Folfas E; Gallegos MA; Neel LK; Nicholson DJ; Williams CE; McMillan WO; Logan ML; Cox CL
    Ecol Evol Physiol; 2024; 97(2):81-96. PubMed ID: 38728692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Egg incubation temperature does not influence adult heat tolerance in the lizard
    Gunderson AR; Fargevieille A; Warner DA
    Biol Lett; 2020 Jan; 16(1):20190716. PubMed ID: 31937216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Warming effects on lizard gut microbiome depend on habitat connectivity.
    Fromm E; Zinger L; Pellerin F; Di Gesu L; Jacob S; Winandy L; Aguilée R; Parthuisot N; Iribar A; White J; Bestion E; Cote J
    Proc Biol Sci; 2024 Apr; 291(2021):20240220. PubMed ID: 38654642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ambient temperature alters body size and gut microbiota of Xenopus tropicalis.
    Li J; Rui J; Li Y; Tang N; Zhan S; Jiang J; Li X
    Sci China Life Sci; 2020 Jun; 63(6):915-925. PubMed ID: 31686318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal processing of food reduces gut microbiota diversity of the host and triggers adaptation of the microbiota: evidence from two vertebrates.
    Zhang Z; Li D
    Microbiome; 2018 May; 6(1):99. PubMed ID: 29855351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gut microbiota parallelism and divergence associated with colonisation of novel habitats.
    Härer A; Mauro AA; Laurentino TG; Rosenblum EB; Rennison DJ
    Mol Ecol; 2023 Oct; 32(20):5661-5672. PubMed ID: 37715531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does adaptive radiation of a host lineage promote ecological diversity of its bacterial communities? A test using gut microbiota of Anolis lizards.
    Ren T; Kahrl AF; Wu M; Cox RM
    Mol Ecol; 2016 Oct; 25(19):4793-804. PubMed ID: 27497270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental manipulation of microbiota reduces host thermal tolerance and fitness under heat stress in a vertebrate ectotherm.
    Fontaine SS; Mineo PM; Kohl KD
    Nat Ecol Evol; 2022 Apr; 6(4):405-417. PubMed ID: 35256809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen environment and metabolic oxygen demand predictably interact to affect thermal behavior in a lizard, Sceloporus occidentalis.
    Leibold DC; Gastelum JA; VandenBrooks JM; Telemeco RS
    J Exp Zool A Ecol Integr Physiol; 2022 Aug; 337(7):739-745. PubMed ID: 35652426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.