These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32591601)

  • 1. A comparative study on the micro-surface characteristics at black shale initial oxidation stage.
    Li Q; Zhu B; Li J
    Sci Rep; 2020 Jun; 10(1):10406. PubMed ID: 32591601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can Sulfate Be the First Dominant Aqueous Sulfur Species Formed in the Oxidation of Pyrite by
    Borilova S; Mandl M; Zeman J; Kucera J; Pakostova E; Janiczek O; Tuovinen OH
    Front Microbiol; 2018; 9():3134. PubMed ID: 30619202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Pyrite Oxidation on the Pore-Structure Characteristics of Shale Reservoir Rocks under the Interaction of Fracturing Fluid.
    Sun Z; Ni Y; Wu Y; Lei Y
    ACS Omega; 2022 Aug; 7(30):26549-26559. PubMed ID: 35936473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deterioration and Oxidation Characteristics of Black Shale under Immersion and Its Impact on the Strength of Concrete.
    Liao X; Zhang W; Chen J; Wang Q; Wu X; Ling S; Guo D
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32486460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nature of Schwertmannite and Jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability.
    Zhu J; Gan M; Zhang D; Hu Y; Chai L
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2679-85. PubMed ID: 23623084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of heterotrophic microbial growth on biological oxidation of pyrite.
    Marchand EA; Silverstein J
    Environ Sci Technol; 2002 Dec; 36(24):5483-90. PubMed ID: 12521179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genesis and Distribution of Pyrite in the Lacustrine Shale: Evidence from the Es3x Shale of the Eocene Shahejie Formation, Zhanhua Sag, East China.
    Khan D; Qiu L; Liang C; Mirza K; Rehman SU; Han Y; Hannan A; Kashif M; Kra KL
    ACS Omega; 2022 Jan; 7(1):1244-1258. PubMed ID: 35036786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanopore Formation and Structural Changes in Black Shale During the Initial Weathering Stage: A Longmaxi Formation Profile in Northwestern Hunan, China.
    Zhuo XZ; Niu BX; Ju YW; Zhang LY; Yan QH; Yang JL
    J Nanosci Nanotechnol; 2021 Jan; 21(1):195-211. PubMed ID: 33213623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Nitrate Ions on Acidithiobacillus ferrooxidans-Mediated Bio-oxidation of Ferrous Ions and Pyrite.
    Liu FW; Qiao XX; Xing K; Shi J; Zhou LX; Dong Y; Bi WL; Zhang J
    Curr Microbiol; 2020 Jun; 77(6):1070-1080. PubMed ID: 32036394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodesulphurization of coal: mechanism and rate limiting factors.
    Malik A; Dastidar MG; Roychoudhury PK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(6):1113-28. PubMed ID: 11501309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and properties of ternary (K, NH₄, H₃O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions.
    Jones FS; Bigham JM; Gramp JP; Tuovinen OH
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():391-9. PubMed ID: 25280720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrite oxidation by Thiobacillus ferrooxidans with special reference to the sulphur moiety of the mineral.
    Arkesteyn GJ
    Antonie Van Leeuwenhoek; 1979; 45(3):423-35. PubMed ID: 45294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferrous iron oxidation by sulfur-oxidizing Acidithiobacillus ferrooxidans and analysis of the process at the levels of transcription and protein synthesis.
    Kucera J; Bouchal P; Lochman J; Potesil D; Janiczek O; Zdrahal Z; Mandl M
    Antonie Van Leeuwenhoek; 2013 Apr; 103(4):905-19. PubMed ID: 23291738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of bacterial pyrite oxidation.
    Silverman MP
    J Bacteriol; 1967 Oct; 94(4):1046-51. PubMed ID: 6051342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effect between sulfide mineral and acidophilic bacteria significantly promoted Cr(VI) reduction.
    Gan M; Li J; Sun S; Ding J; Zhu J; Liu X; Qiu G
    J Environ Manage; 2018 Aug; 219():84-94. PubMed ID: 29730593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate Equations and Kinetic Parameters of the Reactions Involved in Pyrite Oxidation by Thiobacillus ferrooxidans.
    Lizama HM; Suzuki I
    Appl Environ Microbiol; 1989 Nov; 55(11):2918-23. PubMed ID: 16348054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coal Depyritization by the Thermophilic Archaeon Metallosphaera sedula.
    Clark TR; Baldi F; Olson GJ
    Appl Environ Microbiol; 1993 Aug; 59(8):2375-9. PubMed ID: 16349006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal conditions for bio-oxidation of ferrous ions to ferric ions using Thiobacillus ferrooxidans.
    Malhotra S; Tankhiwale AS; Rajvaidya AS; Pandey RA
    Bioresour Technol; 2002 Dec; 85(3):225-34. PubMed ID: 12365488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans.
    Fowler TA; Holmes PR; Crundwell FK
    Appl Environ Microbiol; 1999 Jul; 65(7):2987-93. PubMed ID: 10388693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of adsorbed lipid on pyrite oxidation under biotic conditions.
    Hao J; Cleveland C; Lim E; Strongin DR; Schoonen MA
    Geochem Trans; 2006 Jul; 7():8. PubMed ID: 16869974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.