These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 32591778)
1. SMNN: batch effect correction for single-cell RNA-seq data via supervised mutual nearest neighbor detection. Yang Y; Li G; Qian H; Wilhelmsen KC; Shen Y; Li Y Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591778 [TBL] [Abstract][Full Text] [Related]
2. iSMNN: batch effect correction for single-cell RNA-seq data via iterative supervised mutual nearest neighbor refinement. Yang Y; Li G; Xie Y; Wang L; Lagler TM; Yang Y; Liu J; Qian L; Li Y Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839756 [TBL] [Abstract][Full Text] [Related]
3. deepMNN: Deep Learning-Based Single-Cell RNA Sequencing Data Batch Correction Using Mutual Nearest Neighbors. Zou B; Zhang T; Zhou R; Jiang X; Yang H; Jin X; Bai Y Front Genet; 2021; 12():708981. PubMed ID: 34447413 [TBL] [Abstract][Full Text] [Related]
4. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Haghverdi L; Lun ATL; Morgan MD; Marioni JC Nat Biotechnol; 2018 Jun; 36(5):421-427. PubMed ID: 29608177 [TBL] [Abstract][Full Text] [Related]
5. A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics. Lakkis J; Wang D; Zhang Y; Hu G; Wang K; Pan H; Ungar L; Reilly MP; Li X; Li M Genome Res; 2021 Oct; 31(10):1753-1766. PubMed ID: 34035047 [TBL] [Abstract][Full Text] [Related]
6. ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks. Wang Y; Liu T; Zhao H Bioinformatics; 2022 Aug; 38(16):3942-3949. PubMed ID: 35771600 [TBL] [Abstract][Full Text] [Related]
7. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data. Ma Y; Pei Y J Bioinform Comput Biol; 2024 Jun; 22(3):2450015. PubMed ID: 39036845 [TBL] [Abstract][Full Text] [Related]
8. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Tran HTN; Ang KS; Chevrier M; Zhang X; Lee NYS; Goh M; Chen J Genome Biol; 2020 Jan; 21(1):12. PubMed ID: 31948481 [TBL] [Abstract][Full Text] [Related]
9. CBA: Cluster-Guided Batch Alignment for Single Cell RNA-seq. Yu W; Mahfouz A; Reinders MJT Front Genet; 2021; 12():644211. PubMed ID: 33927748 [TBL] [Abstract][Full Text] [Related]
10. BERMAD: batch effect removal for single-cell RNA-seq data using a multi-layer adaptation autoencoder with dual-channel framework. Zhan X; Yin Y; Zhang H Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38439545 [TBL] [Abstract][Full Text] [Related]
11. Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis. Xu X; Yu X; Hu G; Wang K; Zhang J; Li X Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35821114 [TBL] [Abstract][Full Text] [Related]
12. Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation. Chen L; He Q; Zhai Y; Deng M Bioinformatics; 2021 May; 37(6):775-784. PubMed ID: 33098418 [TBL] [Abstract][Full Text] [Related]
13. Batch alignment of single-cell transcriptomics data using deep metric learning. Yu X; Xu X; Zhang J; Li X Nat Commun; 2023 Feb; 14(1):960. PubMed ID: 36810607 [TBL] [Abstract][Full Text] [Related]
14. Improving Single-Cell RNA-seq Clustering by Integrating Pathways. Zhang C; Gao L; Wang B; Gao Y Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33940590 [TBL] [Abstract][Full Text] [Related]
15. A novel batch-effect correction method for scRNA-seq data based on Adversarial Information Factorization. Monnier L; Cournède PH PLoS Comput Biol; 2024 Feb; 20(2):e1011880. PubMed ID: 38386700 [TBL] [Abstract][Full Text] [Related]
16. scGAD: a new task and end-to-end framework for generalized cell type annotation and discovery. Zhai Y; Chen L; Deng M Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869836 [TBL] [Abstract][Full Text] [Related]
17. REBET: a method to determine the number of cell clusters based on batch effect removal. Fang ZY; Lin CX; Xu YP; Li HD; Xu QS Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34131702 [TBL] [Abstract][Full Text] [Related]
18. BATMAN: Fast and Accurate Integration of Single-Cell RNA-Seq Datasets via Minimum-Weight Matching. Mandric I; Hill BL; Freund MK; Thompson M; Halperin E iScience; 2020 Jun; 23(6):101185. PubMed ID: 32504875 [TBL] [Abstract][Full Text] [Related]
19. One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data. Wang CX; Zhang L; Wang B Genome Biol; 2022 Apr; 23(1):102. PubMed ID: 35443717 [TBL] [Abstract][Full Text] [Related]
20. Deep Batch Integration and Denoise of Single-Cell RNA-Seq Data. Qin L; Zhang G; Zhang S; Chen Y Adv Sci (Weinh); 2024 Aug; 11(29):e2308934. PubMed ID: 38778573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]