These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 32591831)

  • 1. MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide.
    Bashyam VM; Erus G; Doshi J; Habes M; Nasrallah I; Truelove-Hill M; Srinivasan D; Mamourian L; Pomponio R; Fan Y; Launer LJ; Masters CL; Maruff P; Zhuo C; Völzke H; Johnson SC; Fripp J; Koutsouleris N; Satterthwaite TD; Wolf D; Gur RE; Gur RC; Morris J; Albert MS; Grabe HJ; Resnick S; Bryan RN; Wolk DA; Shou H; Davatzikos C
    Brain; 2020 Jul; 143(7):2312-2324. PubMed ID: 32591831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A generalizable brain extraction net (BEN) for multimodal MRI data from rodents, nonhuman primates, and humans.
    Yu Z; Han X; Xu W; Zhang J; Marr C; Shen D; Peng T; Zhang XY; Feng J
    Elife; 2022 Dec; 11():. PubMed ID: 36546674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
    Spasov S; Passamonti L; Duggento A; Liò P; Toschi N;
    Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. nBEST: Deep-learning-based non-human primates Brain Extraction and Segmentation Toolbox across ages, sites and species.
    Zhong T; Wu X; Liang S; Ning Z; Wang L; Niu Y; Yang S; Kang Z; Feng Q; Li G; Zhang Y
    Neuroimage; 2024 Jul; 295():120652. PubMed ID: 38797384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker.
    Cole JH; Poudel RPK; Tsagkrasoulis D; Caan MWA; Steves C; Spector TD; Montana G
    Neuroimage; 2017 Dec; 163():115-124. PubMed ID: 28765056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FastSurfer - A fast and accurate deep learning based neuroimaging pipeline.
    Henschel L; Conjeti S; Estrada S; Diers K; Fischl B; Reuter M
    Neuroimage; 2020 Oct; 219():117012. PubMed ID: 32526386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning based pipelines for Alzheimer's disease diagnosis: A comparative study and a novel deep-ensemble method.
    Loddo A; Buttau S; Di Ruberto C
    Comput Biol Med; 2022 Feb; 141():105032. PubMed ID: 34838263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain extraction on MRI scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training.
    Thakur S; Doshi J; Pati S; Rathore S; Sako C; Bilello M; Ha SM; Shukla G; Flanders A; Kotrotsou A; Milchenko M; Liem S; Alexander GS; Lombardo J; Palmer JD; LaMontagne P; Nazeri A; Talbar S; Kulkarni U; Marcus D; Colen R; Davatzikos C; Erus G; Bakas S
    Neuroimage; 2020 Oct; 220():117081. PubMed ID: 32603860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers.
    Cole JH; Franke K
    Trends Neurosci; 2017 Dec; 40(12):681-690. PubMed ID: 29074032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards the interpretability of deep learning models for multi-modal neuroimaging: Finding structural changes of the ageing brain.
    Hofmann SM; Beyer F; Lapuschkin S; Goltermann O; Loeffler M; Müller KR; Villringer A; Samek W; Witte AV
    Neuroimage; 2022 Nov; 261():119504. PubMed ID: 35882272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image-based state-of-the-art techniques for the identification and classification of brain diseases: a review.
    Haq EU; Huang J; Kang L; Haq HU; Zhan T
    Med Biol Eng Comput; 2020 Nov; 58(11):2603-2620. PubMed ID: 32960410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Deep Learning Algorithms to Automatically Identify the Brain MRI Contrast: Implications for Managing Large Databases.
    Pizarro R; Assemlal HE; De Nigris D; Elliott C; Antel S; Arnold D; Shmuel A
    Neuroinformatics; 2019 Jan; 17(1):115-130. PubMed ID: 29956131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Searching Reproducible Brain Features using NeuroMark: Templates for Different Age Populations and Imaging Modalities.
    Fu Z; Batta I; Wu L; Abrol A; Agcaoglu O; Salman MS; Du Y; Iraji A; Shultz S; Sui J; Calhoun VD
    Neuroimage; 2024 Apr; 292():120617. PubMed ID: 38636639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning framework identifies dimensional representations of Alzheimer's Disease from brain structure.
    Yang Z; Nasrallah IM; Shou H; Wen J; Doshi J; Habes M; Erus G; Abdulkadir A; Resnick SM; Albert MS; Maruff P; Fripp J; Morris JC; Wolk DA; Davatzikos C; ; ;
    Nat Commun; 2021 Dec; 12(1):7065. PubMed ID: 34862382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From a deep learning model back to the brain-Identifying regional predictors and their relation to aging.
    Levakov G; Rosenthal G; Shelef I; Raviv TR; Avidan G
    Hum Brain Mapp; 2020 Aug; 41(12):3235-3252. PubMed ID: 32320123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Style transfer generative adversarial networks to harmonize multisite MRI to a single reference image to avoid overcorrection.
    Liu M; Zhu AH; Maiti P; Thomopoulos SI; Gadewar S; Chai Y; Kim H; Jahanshad N;
    Hum Brain Mapp; 2023 Oct; 44(14):4875-4892. PubMed ID: 37471702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate brain-age models for routine clinical MRI examinations.
    Wood DA; Kafiabadi S; Busaidi AA; Guilhem E; Montvila A; Lynch J; Townend M; Agarwal S; Mazumder A; Barker GJ; Ourselin S; Cole JH; Booth TC
    Neuroimage; 2022 Apr; 249():118871. PubMed ID: 34995797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multisite Machine Learning Analysis Provides a Robust Structural Imaging Signature of Schizophrenia Detectable Across Diverse Patient Populations and Within Individuals.
    Rozycki M; Satterthwaite TD; Koutsouleris N; Erus G; Doshi J; Wolf DH; Fan Y; Gur RE; Gur RC; Meisenzahl EM; Zhuo C; Yin H; Yan H; Yue W; Zhang D; Davatzikos C
    Schizophr Bull; 2018 Aug; 44(5):1035-1044. PubMed ID: 29186619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan.
    Pomponio R; Erus G; Habes M; Doshi J; Srinivasan D; Mamourian E; Bashyam V; Nasrallah IM; Satterthwaite TD; Fan Y; Launer LJ; Masters CL; Maruff P; Zhuo C; Völzke H; Johnson SC; Fripp J; Koutsouleris N; Wolf DH; Gur R; Gur R; Morris J; Albert MS; Grabe HJ; Resnick SM; Bryan RN; Wolk DA; Shinohara RT; Shou H; Davatzikos C
    Neuroimage; 2020 Mar; 208():116450. PubMed ID: 31821869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal.
    Dinsdale NK; Jenkinson M; Namburete AIL
    Neuroimage; 2021 Mar; 228():117689. PubMed ID: 33385551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.