These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 32591831)

  • 21. Deep learning to detect Alzheimer's disease from neuroimaging: A systematic literature review.
    Ebrahimighahnavieh MA; Luo S; Chiong R
    Comput Methods Programs Biomed; 2020 Apr; 187():105242. PubMed ID: 31837630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the potential of representation and transfer learning for anatomical neuroimaging: Application to psychiatry.
    Dufumier B; Gori P; Petiton S; Louiset R; Mangin JF; Grigis A; Duchesnay E
    Neuroimage; 2024 Aug; 296():120665. PubMed ID: 38848981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models' Performance and Robustness.
    Sanaat A; Shiri I; Ferdowsi S; Arabi H; Zaidi H
    J Digit Imaging; 2022 Jun; 35(3):469-481. PubMed ID: 35137305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a deep learning network for Alzheimer's disease classification with evaluation of imaging modality and longitudinal data.
    Deatsch A; Perovnik M; Namías M; Trošt M; Jeraj R
    Phys Med Biol; 2022 Sep; 67(19):. PubMed ID: 36055243
    [No Abstract]   [Full Text] [Related]  

  • 26. Preferential degradation of cognitive networks differentiates Alzheimer's disease from ageing.
    Chhatwal JP; Schultz AP; Johnson KA; Hedden T; Jaimes S; Benzinger TLS; Jack C; Ances BM; Ringman JM; Marcus DS; Ghetti B; Farlow MR; Danek A; Levin J; Yakushev I; Laske C; Koeppe RA; Galasko DR; Xiong C; Masters CL; Schofield PR; Kinnunen KM; Salloway S; Martins RN; McDade E; Cairns NJ; Buckles VD; Morris JC; Bateman R; Sperling RA;
    Brain; 2018 May; 141(5):1486-1500. PubMed ID: 29522171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generalization of diffusion magnetic resonance imaging-based brain age prediction model through transfer learning.
    Chen CL; Hsu YC; Yang LY; Tung YH; Luo WB; Liu CM; Hwang TJ; Hwu HG; Isaac Tseng WY
    Neuroimage; 2020 Aug; 217():116831. PubMed ID: 32438048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transfer learning improves resting-state functional connectivity pattern analysis using convolutional neural networks.
    Vakli P; Deák-Meszlényi RJ; Hermann P; Vidnyánszky Z
    Gigascience; 2018 Dec; 7(12):. PubMed ID: 30395218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13530. PubMed ID: 35044073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting brain age with complex networks: From adolescence to adulthood.
    Bellantuono L; Marzano L; La Rocca M; Duncan D; Lombardi A; Maggipinto T; Monaco A; Tangaro S; Amoroso N; Bellotti R
    Neuroimage; 2021 Jan; 225():117458. PubMed ID: 33099008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uncertainty modelling in deep learning for safer neuroimage enhancement: Demonstration in diffusion MRI.
    Tanno R; Worrall DE; Kaden E; Ghosh A; Grussu F; Bizzi A; Sotiropoulos SN; Criminisi A; Alexander DC
    Neuroimage; 2021 Jan; 225():117366. PubMed ID: 33039617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Novel Deep Learning Approach with a 3D Convolutional Ladder Network for Differential Diagnosis of Idiopathic Normal Pressure Hydrocephalus and Alzheimer's Disease.
    Irie R; Otsuka Y; Hagiwara A; Kamagata K; Kamiya K; Suzuki M; Wada A; Maekawa T; Fujita S; Kato S; Nakajima M; Miyajima M; Motoi Y; Abe O; Aoki S
    Magn Reson Med Sci; 2020 Dec; 19(4):351-358. PubMed ID: 31969525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated claustrum segmentation in human brain MRI using deep learning.
    Li H; Menegaux A; Schmitz-Koep B; Neubauer A; Bäuerlein FJB; Shit S; Sorg C; Menze B; Hedderich D
    Hum Brain Mapp; 2021 Dec; 42(18):5862-5872. PubMed ID: 34520080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large-scale multi-sample study.
    Pinaya WHL; Mechelli A; Sato JR
    Hum Brain Mapp; 2019 Feb; 40(3):944-954. PubMed ID: 30311316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. OpenBHB: a Large-Scale Multi-Site Brain MRI Data-set for Age Prediction and Debiasing.
    Dufumier B; Grigis A; Victor J; Ambroise C; Frouin V; Duchesnay E
    Neuroimage; 2022 Nov; 263():119637. PubMed ID: 36122684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. QuickNAT: A fully convolutional network for quick and accurate segmentation of neuroanatomy.
    Guha Roy A; Conjeti S; Navab N; Wachinger C;
    Neuroimage; 2019 Feb; 186():713-727. PubMed ID: 30502445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Multidimensional Neural Maturation Index Reveals Reproducible Developmental Patterns in Children and Adolescents.
    Truelove-Hill M; Erus G; Bashyam V; Varol E; Sako C; Gur RC; Gur RE; Koutsouleris N; Zhuo C; Fan Y; Wolf DH; Satterthwaite TD; Davatzikos C
    J Neurosci; 2020 Feb; 40(6):1265-1275. PubMed ID: 31896669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of deep learning in infant brain MRI analysis.
    Mostapha M; Styner M
    Magn Reson Imaging; 2019 Dec; 64():171-189. PubMed ID: 31229667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual deep learning of unprocessed neuroimaging characterises dementia subtypes and generalises across non-stereotypic samples.
    Moguilner S; Whelan R; Adams H; Valcour V; Tagliazucchi E; Ibáñez A
    EBioMedicine; 2023 Apr; 90():104540. PubMed ID: 36972630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep cross-modality (MR-CT) educed distillation learning for cone beam CT lung tumor segmentation.
    Jiang J; Riyahi Alam S; Chen I; Zhang P; Rimner A; Deasy JO; Veeraraghavan H
    Med Phys; 2021 Jul; 48(7):3702-3713. PubMed ID: 33905558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.