These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 32591831)
41. Deep cross-modality (MR-CT) educed distillation learning for cone beam CT lung tumor segmentation. Jiang J; Riyahi Alam S; Chen I; Zhang P; Rimner A; Deasy JO; Veeraraghavan H Med Phys; 2021 Jul; 48(7):3702-3713. PubMed ID: 33905558 [TBL] [Abstract][Full Text] [Related]
42. SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI. Tian Q; Li Z; Fan Q; Polimeni JR; Bilgic B; Salat DH; Huang SY Neuroimage; 2022 Jun; 253():119033. PubMed ID: 35240299 [TBL] [Abstract][Full Text] [Related]
43. Direct attenuation correction of brain PET images using only emission data via a deep convolutional encoder-decoder (Deep-DAC). Shiri I; Ghafarian P; Geramifar P; Leung KH; Ghelichoghli M; Oveisi M; Rahmim A; Ay MR Eur Radiol; 2019 Dec; 29(12):6867-6879. PubMed ID: 31227879 [TBL] [Abstract][Full Text] [Related]
44. Estimating brain age based on a uniform healthy population with deep learning and structural magnetic resonance imaging. Feng X; Lipton ZC; Yang J; Small SA; Provenzano FA; ; ; Neurobiol Aging; 2020 Jul; 91():15-25. PubMed ID: 32305781 [TBL] [Abstract][Full Text] [Related]
45. Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model. Saha S; Pagnozzi A; Bourgeat P; George JM; Bradford D; Colditz PB; Boyd RN; Rose SE; Fripp J; Pannek K Neuroimage; 2020 Jul; 215():116807. PubMed ID: 32278897 [TBL] [Abstract][Full Text] [Related]
46. Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process. Feng W; Halm-Lutterodt NV; Tang H; Mecum A; Mesregah MK; Ma Y; Li H; Zhang F; Wu Z; Yao E; Guo X Int J Neural Syst; 2020 Jun; 30(6):2050032. PubMed ID: 32498641 [TBL] [Abstract][Full Text] [Related]
47. A recipe for accurate estimation of lifespan brain trajectories, distinguishing longitudinal and cohort effects. Sørensen Ø; Walhovd KB; Fjell AM Neuroimage; 2021 Feb; 226():117596. PubMed ID: 33248257 [TBL] [Abstract][Full Text] [Related]
49. DARQ: Deep learning of quality control for stereotaxic registration of human brain MRI to the T1w MNI-ICBM 152 template. Fonov VS; Dadar M; Adni TPRG; Collins DL Neuroimage; 2022 Aug; 257():119266. PubMed ID: 35500807 [TBL] [Abstract][Full Text] [Related]
51. Alzheimer's diagnosis using deep learning in segmenting and classifying 3D brain MR images. Tuan TA; Pham TB; Kim JY; Tavares JMRS Int J Neurosci; 2022 Jul; 132(7):689-698. PubMed ID: 33045895 [TBL] [Abstract][Full Text] [Related]
52. Optimising brain age estimation through transfer learning: A suite of pre-trained foundation models for improved performance and generalisability in a clinical setting. Wood DA; Townend M; Guilhem E; Kafiabadi S; Hammam A; Wei Y; Al Busaidi A; Mazumder A; Sasieni P; Barker GJ; Ourselin S; Cole JH; Booth TC Hum Brain Mapp; 2024 Mar; 45(4):e26625. PubMed ID: 38433665 [TBL] [Abstract][Full Text] [Related]
53. A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer's Disease Stages Using Resting-State fMRI and Residual Neural Networks. Ramzan F; Khan MUG; Rehmat A; Iqbal S; Saba T; Rehman A; Mehmood Z J Med Syst; 2019 Dec; 44(2):37. PubMed ID: 31853655 [TBL] [Abstract][Full Text] [Related]
54. Deep learning only by normal brain PET identify unheralded brain anomalies. Choi H; Ha S; Kang H; Lee H; Lee DS; EBioMedicine; 2019 May; 43():447-453. PubMed ID: 31003928 [TBL] [Abstract][Full Text] [Related]
55. High resolution automated labeling of the hippocampus and amygdala using a 3D convolutional neural network trained on whole brain 700 μm isotropic 7T MP2RAGE MRI. Pardoe HR; Antony AR; Hetherington H; Bagić AI; Shepherd TM; Friedman D; Devinsky O; Pan J Hum Brain Mapp; 2021 May; 42(7):2089-2098. PubMed ID: 33491831 [TBL] [Abstract][Full Text] [Related]
56. Deep learning segmentation of orbital fat to calibrate conventional MRI for longitudinal studies. Brown RA; Fetco D; Fratila R; Fadda G; Jiang S; Alkhawajah NM; Yeh EA; Banwell B; Bar-Or A; Arnold DL; Neuroimage; 2020 Mar; 208():116442. PubMed ID: 31821865 [TBL] [Abstract][Full Text] [Related]
57. AI-driven attenuation correction for brain PET/MRI: Clinical evaluation of a dementia cohort and importance of the training group size. Ladefoged CN; Hansen AE; Henriksen OM; Bruun FJ; Eikenes L; Øen SK; Karlberg A; Højgaard L; Law I; Andersen FL Neuroimage; 2020 Nov; 222():117221. PubMed ID: 32750498 [TBL] [Abstract][Full Text] [Related]
58. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling. Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D; Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724 [TBL] [Abstract][Full Text] [Related]
59. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images. Chen H; Dou Q; Yu L; Qin J; Heng PA Neuroimage; 2018 Apr; 170():446-455. PubMed ID: 28445774 [TBL] [Abstract][Full Text] [Related]
60. Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data. Samper-González J; Burgos N; Bottani S; Fontanella S; Lu P; Marcoux A; Routier A; Guillon J; Bacci M; Wen J; Bertrand A; Bertin H; Habert MO; Durrleman S; Evgeniou T; Colliot O; ; Neuroimage; 2018 Dec; 183():504-521. PubMed ID: 30130647 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]