These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 32591945)
1. Influence of mycorrhiza and fly ash on the survival, growth and heavy metal accumulation in three Acacia species grown in Cu-Ni mine soil. Ultra VU; Manyiwa T Environ Geochem Health; 2021 Apr; 43(4):1337-1353. PubMed ID: 32591945 [TBL] [Abstract][Full Text] [Related]
2. Growth and yield of lemongrass ( Ultra VU Int J Phytoremediation; 2020; 22(14):1551-1561. PubMed ID: 32634319 [TBL] [Abstract][Full Text] [Related]
3. Arbuscular mycorrhizas amplify the risk of heavy metal transfer to human food chain from fly ash ameliorated agricultural soils. Goswami V; Deepika S; Diwakar S; Kothamasi D Environ Pollut; 2023 Jul; 329():121733. PubMed ID: 37119999 [TBL] [Abstract][Full Text] [Related]
4. Arbuscular Mycorrhizal Fungi Favor the Initial Growth of Acacia mangium, Sorghum bicolor, and Urochloa brizantha in Soil Contaminated with Zn, Cu, Pb, and Cd. de Fátima Pedroso D; Barbosa MV; Dos Santos JV; Pinto FA; Siqueira JO; Carneiro MAC Bull Environ Contam Toxicol; 2018 Sep; 101(3):386-391. PubMed ID: 30066147 [TBL] [Abstract][Full Text] [Related]
5. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335 [TBL] [Abstract][Full Text] [Related]
6. Enhanced establishment of Colophospermum mopane (Kirk ex Benth.) seedlings for phytoremediation of Cu-Ni mine tailings. Ultra VU; Tirivarombo S; Toteng O; Ultra W Environ Sci Pollut Res Int; 2022 Aug; 29(40):60054-60066. PubMed ID: 35411519 [TBL] [Abstract][Full Text] [Related]
7. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India. Mukhopadhyay S; Rana V; Kumar A; Maiti SK Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831 [TBL] [Abstract][Full Text] [Related]
8. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants. Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650 [TBL] [Abstract][Full Text] [Related]
9. The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Kohler J; Caravaca F; Azcón R; Díaz G; Roldán A Sci Total Environ; 2015 May; 514():42-8. PubMed ID: 25659304 [TBL] [Abstract][Full Text] [Related]
10. Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings. Lee SH; Ji W; Lee WS; Koo N; Koh IH; Kim MS; Park JS J Environ Manage; 2014 Jun; 139():15-21. PubMed ID: 24681360 [TBL] [Abstract][Full Text] [Related]
11. Studies on mycorrhizal inoculation on dry matter yield and root colonization of some medicinal plants grown in stress and forest soils. Chandra KK; Kumar N; Chand G J Environ Biol; 2010 Nov; 31(6):975-9. PubMed ID: 21506485 [TBL] [Abstract][Full Text] [Related]
12. Contrasting effects of biochar and hydrothermally treated coal gangue on leachability, bioavailability, speciation and accumulation of heavy metals by rapeseed in copper mine tailings. Munir MAM; Liu G; Yousaf B; Mian MM; Ali MU; Ahmed R; Cheema AI; Naushad M Ecotoxicol Environ Saf; 2020 Mar; 191():110244. PubMed ID: 32004946 [TBL] [Abstract][Full Text] [Related]
13. Rhizosphere properties and heavy metal accumulation of plants growing in the fly ash dumpsite, Morupule power plant, Botswana. Gajaje K; Ultra VU; David PW; Rantong G Environ Sci Pollut Res Int; 2021 Apr; 28(16):20637-20649. PubMed ID: 33405121 [TBL] [Abstract][Full Text] [Related]
14. Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Simon L Environ Geochem Health; 2005 Dec; 27(4):289-300. PubMed ID: 16027964 [TBL] [Abstract][Full Text] [Related]
15. Growth performance, metal accumulation and biochemical responses of Palak (Beta vulgaris L. var. Allgreen H-1) grown on soil amended with sewage sludge-fly ash mixtures. Sharma B; Kothari R; Singh RP Environ Sci Pollut Res Int; 2018 May; 25(13):12619-12640. PubMed ID: 29468393 [TBL] [Abstract][Full Text] [Related]
16. Mycorrhizo-remediation of lead/zinc mine tailings using vetiver: a field study. Wu SC; Wong CC; Shu WS; Khan AG; Wong MH Int J Phytoremediation; 2011 Jan; 13(1):61-74. PubMed ID: 21598768 [TBL] [Abstract][Full Text] [Related]
17. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants. Sinha S; Gupta AK Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293 [TBL] [Abstract][Full Text] [Related]
18. Assessment of medicinal plants colonizing abundantly on metal-enriched fly ash deposits: phytoremediation prospective. Yadav S; Pandey VC; Singh L Int J Phytoremediation; 2024; 26(9):1518-1525. PubMed ID: 38563239 [TBL] [Abstract][Full Text] [Related]
19. Recovering a copper mine soil using organic amendments and phytomanagement with Brassica juncea L. Rodríguez-Vila A; Covelo EF; Forján R; Asensio V J Environ Manage; 2015 Jan; 147():73-80. PubMed ID: 25262389 [TBL] [Abstract][Full Text] [Related]
20. Growth and nutrient uptake of arbuscular mycorrhizal maize in different depths of soil overlying coal fly ash. Bi YL; Li XL; Christie P; Hu ZQ; Wong MH Chemosphere; 2003 Feb; 50(6):863-9. PubMed ID: 12688503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]