These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32592086)

  • 21. Rationally engineered Cas9 nucleases with improved specificity.
    Slaymaker IM; Gao L; Zetsche B; Scott DA; Yan WX; Zhang F
    Science; 2016 Jan; 351(6268):84-8. PubMed ID: 26628643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and Analysis of Small Molecule Inhibitors of CRISPR-Cas9 in Human Cells.
    Yang Y; Li D; Wan F; Chen B; Wu G; Li F; Ren Y; Liang P; Wan J; Songyang Z
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyperactive Nickase Activity Improves Adenine Base Editing.
    Gandadireja AP; Vos PD; Siira SJ; Filipovska A; Rackham O
    ACS Synth Biol; 2024 Oct; 13(10):3128-3136. PubMed ID: 39298405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developing small Cas9 hybrids using molecular modeling.
    Mangin A; Dion V; Menzies G
    Sci Rep; 2024 Jul; 14(1):17233. PubMed ID: 39060399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM.
    Endo M; Mikami M; Endo A; Kaya H; Itoh T; Nishimasu H; Nureki O; Toki S
    Nat Plants; 2019 Jan; 5(1):14-17. PubMed ID: 30531939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The post-PAM interaction of RNA-guided spCas9 with DNA dictates its target binding and dissociation.
    Zhang Q; Wen F; Zhang S; Jin J; Bi L; Lu Y; Li M; Xi XG; Huang X; Shen B; Sun B
    Sci Adv; 2019 Nov; 5(11):eaaw9807. PubMed ID: 31763447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A highly specific SpCas9 variant is identified by in vivo screening in yeast.
    Casini A; Olivieri M; Petris G; Montagna C; Reginato G; Maule G; Lorenzin F; Prandi D; Romanel A; Demichelis F; Inga A; Cereseto A
    Nat Biotechnol; 2018 Mar; 36(3):265-271. PubMed ID: 29431739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combinatorial mutagenesis en masse optimizes the genome editing activities of SpCas9.
    Choi GCG; Zhou P; Yuen CTL; Chan BKC; Xu F; Bao S; Chu HY; Thean D; Tan K; Wong KH; Zheng Z; Wong ASL
    Nat Methods; 2019 Aug; 16(8):722-730. PubMed ID: 31308554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expansion of the prime editing modality with Cas9 from Francisella novicida.
    Oh Y; Lee WJ; Hur JK; Song WJ; Lee Y; Kim H; Gwon LW; Kim YH; Park YH; Kim CH; Lim KS; Song BS; Huh JW; Kim SU; Jun BH; Jung C; Lee SH
    Genome Biol; 2022 Apr; 23(1):92. PubMed ID: 35410288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A kinetic model predicts SpCas9 activity, improves off-target classification, and reveals the physical basis of targeting fidelity.
    Eslami-Mossallam B; Klein M; Smagt CVD; Sanden KVD; Jones SK; Hawkins JA; Finkelstein IJ; Depken M
    Nat Commun; 2022 Mar; 13(1):1367. PubMed ID: 35292641
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases.
    Cho SW; Kim S; Kim Y; Kweon J; Kim HS; Bae S; Kim JS
    Genome Res; 2014 Jan; 24(1):132-41. PubMed ID: 24253446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suppression of HBV replication by the expression of nickase- and nuclease dead-Cas9.
    Kurihara T; Fukuhara T; Ono C; Yamamoto S; Uemura K; Okamoto T; Sugiyama M; Motooka D; Nakamura S; Ikawa M; Mizokami M; Maehara Y; Matsuura Y
    Sci Rep; 2017 Jul; 7(1):6122. PubMed ID: 28733609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular Mechanism of D1135E-Induced Discriminated CRISPR-Cas9 PAM Recognition.
    Kang M; Zuo Z; Yin Z; Gu J
    J Chem Inf Model; 2022 Jun; 62(12):3057-3066. PubMed ID: 35666156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequential Activation of Guide RNAs to Enable Successive CRISPR-Cas9 Activities.
    Clarke R; Terry AR; Pennington H; Hasty C; MacDougall MS; Regan M; Merrill BJ
    Mol Cell; 2021 Jan; 81(2):226-238.e5. PubMed ID: 33378644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Target binding and residence: a new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing.
    Feng Y; Liu S; Chen R; Xie A
    J Zhejiang Univ Sci B; 2021 Jan; 22(1):73-86. PubMed ID: 33448189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient DNA interrogation of SpCas9 governed by its electrostatic interaction with DNA beyond the PAM and protospacer.
    Zhang Q; Chen Z; Wang F; Zhang S; Chen H; Gu X; Wen F; Jin J; Zhang X; Huang X; Shen B; Sun B
    Nucleic Acids Res; 2021 Dec; 49(21):12433-12444. PubMed ID: 34850124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and functional insights into the
    Zuo Z; Zolekar A; Babu K; Lin VJ; Hayatshahi HS; Rajan R; Wang YC; Liu J
    Elife; 2019 Jul; 8():. PubMed ID: 31361218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Points of View on the Tools for Genome/Gene Editing.
    Chuang CK; Lin WM
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deleting specific residues from the HNH linkers creates a CRISPR-SpCas9 variant with high fidelity and efficiency.
    Wang G; Wang C; Chu T; Wu X; Anderson CM; Huang D; Li J
    J Biotechnol; 2023 May; 368():42-52. PubMed ID: 37116617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA targeting by Clostridium cellulolyticum CRISPR-Cas9 Type II-C system.
    Fedorova I; Arseniev A; Selkova P; Pobegalov G; Goryanin I; Vasileva A; Musharova O; Abramova M; Kazalov M; Zyubko T; Artamonova T; Artamonova D; Shmakov S; Khodorkovskii M; Severinov K
    Nucleic Acids Res; 2020 Feb; 48(4):2026-2034. PubMed ID: 31943070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.