BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 32592338)

  • 1. Hypoxia equally reduces the respiratory compensation point and the NIRS-derived [HHb] breakpoint during a ramp-incremental test in young active males.
    Azevedo RDA; J E BS; Inglis EC; Iannetta D; Murias JM
    Physiol Rep; 2020 Jun; 8(12):e14478. PubMed ID: 32592338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of the fraction of inspired oxygen on the NIRS-derived deoxygenated hemoglobin "breakpoint" during ramp-incremental test.
    Azevedo RA; Béjar Saona JE; Inglis EC; Iannetta D; Murias JM
    Am J Physiol Regul Integr Comp Physiol; 2020 Feb; 318(2):R399-R409. PubMed ID: 31850819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The plateau in the NIRS-derived [HHb] signal near the end of a ramp incremental test does not indicate the upper limit of O
    Inglis EC; Iannetta D; Murias JM
    Am J Physiol Regul Integr Comp Physiol; 2017 Dec; 313(6):R723-R729. PubMed ID: 28931547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The near-infrared spectroscopy-derived deoxygenated haemoglobin breaking-point is a repeatable measure that demarcates exercise intensity domains.
    Iannetta D; Qahtani A; Mattioni Maturana F; Murias JM
    J Sci Med Sport; 2017 Sep; 20(9):873-877. PubMed ID: 28254143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Spatial Distribution of Absolute Skeletal Muscle Deoxygenation During Ramp-Incremental Exercise Is Not Influenced by Hypoxia.
    Bowen TS; Koga S; Amano T; Kondo N; Rossiter HB
    Adv Exp Med Biol; 2016; 876():19-26. PubMed ID: 26782190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Near-Infrared Spectroscopy and Heart Rate Variability Derived Thresholds to Estimate the Critical Intensity of Exercise.
    Fleitas-Paniagua PR; de Almeida Azevedo R; Trpcic M; Murias JM; Rogers B
    J Strength Cond Res; 2024 Jan; 38(1):e16-e24. PubMed ID: 37815285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of priming exercise on oxygen uptake and muscle deoxygenation kinetics during moderate-intensity cycling in type 2 diabetes.
    Rocha J; Gildea N; O'Shea D; Green S; Egaña M
    J Appl Physiol (1985); 2019 Oct; 127(4):1140-1149. PubMed ID: 31414958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exercise Intensity Thresholds: Identifying the Boundaries of Sustainable Performance.
    Keir DA; Fontana FY; Robertson TC; Murias JM; Paterson DH; Kowalchuk JM; Pogliaghi S
    Med Sci Sports Exerc; 2015 Sep; 47(9):1932-40. PubMed ID: 25606817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quadriceps Muscles O
    Iannetta D; Qahtani A; Millet GY; Murias JM
    Front Physiol; 2017; 8():686. PubMed ID: 28970805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slowed oxygen uptake kinetics in hypoxia correlate with the transient peak and reduced spatial distribution of absolute skeletal muscle deoxygenation.
    Bowen TS; Rossiter HB; Benson AP; Amano T; Kondo N; Kowalchuk JM; Koga S
    Exp Physiol; 2013 Nov; 98(11):1585-96. PubMed ID: 23851917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired aerobic function in patients with cystic fibrosis during ramp exercise.
    Saynor ZL; Barker AR; Oades PJ; Williams CA
    Med Sci Sports Exerc; 2014 Dec; 46(12):2271-8. PubMed ID: 24781889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise.
    Subudhi AW; Dimmen AC; Roach RC
    J Appl Physiol (1985); 2007 Jul; 103(1):177-83. PubMed ID: 17431082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of short work vs. longer work periods within intermittent exercise on V̇o
    McCrudden MC; Keir DA; Belfry GR
    J Appl Physiol (1985); 2017 Jun; 122(6):1435-1444. PubMed ID: 28336535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of VO₂ kinetics by O₂ delivery: insights from acute hypoxia and heavy-intensity priming exercise in young men.
    Spencer MD; Murias JM; Grey TM; Paterson DH
    J Appl Physiol (1985); 2012 Mar; 112(6):1023-32. PubMed ID: 22194321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociation between exercise intensity thresholds: mechanistic insights from supine exercise.
    Goulding RP; Marwood S; Lei TH; Okushima D; Poole DC; Barstow TJ; Kondo N; Koga S
    Am J Physiol Regul Integr Comp Physiol; 2021 Nov; 321(5):R712-R722. PubMed ID: 34431402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Training-Induced Changes in the Respiratory Compensation Point, Deoxyhemoglobin Break Point, and Maximal Lactate Steady State: Evidence of Equivalence.
    Inglis EC; Iannetta D; Keir DA; Murias JM
    Int J Sports Physiol Perform; 2020 Jan; 15(1):119-125. PubMed ID: 31034305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood flow occlusion-related O
    Iannetta D; Okushima D; Inglis EC; Kondo N; Murias JM; Koga S
    J Appl Physiol (1985); 2018 Aug; 125(2):313-319. PubMed ID: 29722622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the profile of muscle deoxygenation during ramp incremental exercise in young men.
    Spencer MD; Murias JM; Paterson DH
    Eur J Appl Physiol; 2012 Sep; 112(9):3349-60. PubMed ID: 22270488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle O2 extraction reserve during intense cycling is site-specific.
    Spencer MD; Amano T; Kondo N; Kowalchuk JM; Koga S
    J Appl Physiol (1985); 2014 Nov; 117(10):1199-206. PubMed ID: 25257877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic Function and Muscle Deoxygenation Dynamics during Ramp Exercise in Children.
    McNarry MA; Farr C; Middlebrooke A; Welford D; Breese B; Armstrong N; Barker AR
    Med Sci Sports Exerc; 2015 Sep; 47(9):1877-84. PubMed ID: 25551403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.