These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 32592438)
1. Field assessment of a newly-designed pneumatic spout to contain spray drift in vineyards: evaluation of canopy distribution and off-target losses. Grella M; Miranda-Fuentes A; Marucco P; Balsari P Pest Manag Sci; 2020 Dec; 76(12):4173-4191. PubMed ID: 32592438 [TBL] [Abstract][Full Text] [Related]
2. UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Biglia A; Grella M; Bloise N; Comba L; Mozzanini E; Sopegno A; Pittarello M; Dicembrini E; Alcatrão LE; Guglieri G; Balsari P; Aimonino DR; Gay P Sci Total Environ; 2022 Nov; 845():157292. PubMed ID: 35820523 [TBL] [Abstract][Full Text] [Related]
3. Assessing the influence of air speed and liquid flow rate on the droplet size and homogeneity in pneumatic spraying. Balsari P; Grella M; Marucco P; Matta F; Miranda-Fuentes A Pest Manag Sci; 2019 Feb; 75(2):366-379. PubMed ID: 29920925 [TBL] [Abstract][Full Text] [Related]
4. Developing strategies to reduce spray drift in pneumatic spraying in vineyards: Assessment of the parameters affecting droplet size in pneumatic spraying. Miranda-Fuentes A; Marucco P; González-Sánchez EJ; Gil E; Grella M; Balsari P Sci Total Environ; 2018 Mar; 616-617():805-815. PubMed ID: 29111253 [TBL] [Abstract][Full Text] [Related]
5. Pesticide dose based on canopy characteristics in apple trees: Reducing environmental risk by reducing the amount of pesticide while maintaining pest and disease control efficacy. Xun L; Garcia-Ruiz F; Fabregas FX; Gil E Sci Total Environ; 2022 Jun; 826():154204. PubMed ID: 35235850 [TBL] [Abstract][Full Text] [Related]
6. Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses. Garcerá C; Moltó E; Chueca P Sci Total Environ; 2017 Dec; 599-600():1344-1362. PubMed ID: 28525940 [TBL] [Abstract][Full Text] [Related]
7. Pneumatic spray delivery-based fixed spray system configuration optimization for efficient agrochemical application in modern vineyards. Bhalekar DG; Sahni RK; Schrader MJ; Khot LR Pest Manag Sci; 2024 Aug; 80(8):4044-4054. PubMed ID: 38563464 [TBL] [Abstract][Full Text] [Related]
8. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Li L; Hu Z; Liu Q; Yi T; Han P; Zhang R; Pan L Front Plant Sci; 2022; 13():981494. PubMed ID: 36247584 [TBL] [Abstract][Full Text] [Related]
9. Spray Drift from Three Airblast Sprayer Technologies in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2020 Jan; 64(1):25-37. PubMed ID: 31786605 [TBL] [Abstract][Full Text] [Related]
10. Toward a new method to classify the airblast sprayers according to their potential drift reduction: comparison of direct and new indirect measurement methods. Grella M; Marucco P; Balsari P Pest Manag Sci; 2019 Aug; 75(8):2219-2235. PubMed ID: 30680860 [TBL] [Abstract][Full Text] [Related]
11. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793 [TBL] [Abstract][Full Text] [Related]
12. Boom sprayer optimizations for bed-grown carrots at different growth stages based on spray distribution and droplet characteristics. Zwertvaegher I; Lamare A; Douzals JP; Balsari P; Marucco P; Grella M; Caffini A; Mylonas N; Dekeyser D; Foqué D; Nuyttens D Pest Manag Sci; 2022 Apr; 78(4):1729-1739. PubMed ID: 34995010 [TBL] [Abstract][Full Text] [Related]
15. Field evaluation of a self-propelled sprayer and effects of the application rate on spray deposition and losses to the ground in greenhouse tomato crops. Sánchez-Hermosilla J; Rincón VJ; Páez F; Agüera F; Carvajal F Pest Manag Sci; 2011 Aug; 67(8):942-7. PubMed ID: 21394883 [TBL] [Abstract][Full Text] [Related]
16. Water-soluble food dye of Allura Red as a tracer to determine the spray deposition of pesticide on target crops. Gao S; Wang G; Zhou Y; Wang M; Yang D; Yuan H; Yan X Pest Manag Sci; 2019 Oct; 75(10):2592-2597. PubMed ID: 30927304 [TBL] [Abstract][Full Text] [Related]
17. Spray performance of flexible shield canopy opener and rotor wind integrated boom-sprayer application in soybean: effects on droplet deposition distribution. Yu S; Cui L; Cui H; Liu X; Liu J; Xin Z; Yuan J; Wang D Pest Manag Sci; 2024 Jul; 80(7):3334-3348. PubMed ID: 38380840 [TBL] [Abstract][Full Text] [Related]
18. Effects of sprayer speed, spray distance, and nozzle arrangement angle on low-flow air-assisted spray deposition. Dai S; Ou M; Du W; Yang X; Dong X; Jiang L; Zhang T; Ding S; Jia W Front Plant Sci; 2023; 14():1184244. PubMed ID: 37223814 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Droplet Size, Coverage, and Drift Potential from UAV Application Methods and Ground Application Methods on Row Crops. Gibbs J; Peters TM; Heck LP Trans ASABE; 2021; 64(3):819-828. PubMed ID: 37667776 [TBL] [Abstract][Full Text] [Related]
20. Are spray drift losses to agricultural roads more important for surface water contamination than direct drift to surface waters? Schönenberger UT; Simon J; Stamm C Sci Total Environ; 2022 Feb; 809():151102. PubMed ID: 34688746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]