These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32592497)

  • 1. Light adaptation mechanisms in the eye of the fiddler crab Afruca tangeri.
    Brodrick EA; Roberts NW; Sumner-Rooney L; Schlepütz CM; How MJ
    J Comp Neurol; 2021 Feb; 529(3):616-634. PubMed ID: 32592497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiddler crab electroretinograms reveal vast circadian shifts in visual sensitivity and temporal summation in dim light.
    Brodrick EA; How MJ; Hemmi JM
    J Exp Biol; 2022 Mar; 225(5):. PubMed ID: 35156128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Daily changes of structure, function and rhodopsin content in the compound eye of the crab Hemigrapsus sanguineus.
    Arikawa K; Kawamata K; Suzuki T; Eguchi E
    J Comp Physiol A; 1987 Aug; 161(2):161-74. PubMed ID: 3625570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional anatomy of the fiddler crab compound eye (Uca vomeris: Ocypodidae, Brachyura, Decapoda).
    Alkaladi A; Zeil J
    J Comp Neurol; 2014 Apr; 522(6):1264-83. PubMed ID: 24114990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The visual ecology of fiddler crabs.
    Zeil J; Hemmi JM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jan; 192(1):1-25. PubMed ID: 16341863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ommatidial structure in relation to turnover of photoreceptor membrane in the locust.
    Williams DS
    Cell Tissue Res; 1982; 225(3):595-617. PubMed ID: 7127410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Vectors of TTX Analogues in the North Atlantic Coast: The Edible Crabs
    Lage S; Ten Brink F; Canário AVM; Da Silva JP
    Mar Drugs; 2023 May; 21(6):. PubMed ID: 37367645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiddler crabs (Afruca tangeri) detect second-order motion in both intensity and polarization.
    Smithers SP; Brett MF; How MJ; Scott-Samuel NE; Roberts NW
    Commun Biol; 2024 Oct; 7(1):1255. PubMed ID: 39362984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic variations in microvilli banding patterns along fiddler crab rhabdoms.
    Alkaladi A; How MJ; Zeil J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Feb; 199(2):99-113. PubMed ID: 23108879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diurnal changes in retinula cell sensitivities and receptive fields (two-dimensional angular sensitivity functions) in the apposition eyes of Ligia exotica (Crustacea, Isopoda).
    Hariyama T; Meyer-Rochow VB; Kawauchi T; Takaku Y; Tsukahara Y
    J Exp Biol; 2001 Jan; 204(Pt 2):239-48. PubMed ID: 11136610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The variation of resolution and of ommatidial dimensions in the compound eyes of the fiddler crab Uca lactea annulipes (Ocypodidae, Brachyura, Decapoda).
    Zeil J; Al-Mutairi M
    J Exp Biol; 1996; 199(Pt 7):1569-77. PubMed ID: 9319471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light intensity appears to be more important than an endogenous seasonal clock for regulating structural rhythms in the lateral eye of the horseshoe crab.
    Zarse CA; Deaton EA; Weiner WW
    Biomed Sci Instrum; 2004; 40():407-12. PubMed ID: 15133992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing the illumination slowly over several weeks protects against light damage in the eyes of the crustacean
    Viljanen MLM; Nevala NE; Calais-Granö CL; Lindström KMW; Donner K
    J Exp Biol; 2017 Aug; 220(Pt 15):2798-2808. PubMed ID: 28515237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target Detection Is Enhanced by Polarization Vision in a Fiddler Crab.
    How MJ; Christy JH; Temple SE; Hemmi JM; Marshall NJ; Roberts NW
    Curr Biol; 2015 Dec; 25(23):3069-73. PubMed ID: 26585278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral sensitivity of four species of fiddler crabs (Uca pugnax, Uca pugilator, Uca vomeris and Uca tangeri) measured by in situ microspectrophotometry.
    Jordão JM; Cronin TW; Oliveira RF
    J Exp Biol; 2007 Feb; 210(Pt 3):447-53. PubMed ID: 17234614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crustacean eye: dark/light adaptation, polarization sensitivity, flicker fusion frequency, and photoreceptor damage.
    Meyer-Rochow VB
    Zoolog Sci; 2001 Dec; 18(9):1175-97. PubMed ID: 11911074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single and multiple visual systems in arthropods.
    Wald G
    J Gen Physiol; 1968 Feb; 51(2):125-56. PubMed ID: 5641632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual adaptations in the night-active wasp Apoica pallens.
    Greiner B
    J Comp Neurol; 2006 Mar; 495(3):255-62. PubMed ID: 16440299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral patterns of two fiddler crab species Uca rapax and Uca tangeri in a seminatural mangrove system.
    van Himbeeck RAF; Huizinga W; Roessink I; Peeters ETHM
    Zoo Biol; 2019 Aug; 38(4):343-354. PubMed ID: 31056807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a two pigment visual system in the fiddler crab, Uca thayeri.
    Horch K; Salmon M; Forward R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Jul; 188(6):493-9. PubMed ID: 12122468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.