These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 32593138)
1. Glioblastomas and brain metastases differentiation following an MRI texture analysis-based radiomics approach. Ortiz-Ramón R; Ruiz-España S; Mollá-Olmos E; Moratal D Phys Med; 2020 Aug; 76():44-54. PubMed ID: 32593138 [TBL] [Abstract][Full Text] [Related]
2. Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study. Ortiz-Ramón R; Larroza A; Ruiz-España S; Arana E; Moratal D Eur Radiol; 2018 Nov; 28(11):4514-4523. PubMed ID: 29761357 [TBL] [Abstract][Full Text] [Related]
3. A radiomics evaluation of 2D and 3D MRI texture features to classify brain metastases from lung cancer and melanoma. Ortiz-Ramon R; Larroza A; Arana E; Moratal D Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():493-496. PubMed ID: 29059917 [TBL] [Abstract][Full Text] [Related]
4. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. Artzi M; Bressler I; Ben Bashat D J Magn Reson Imaging; 2019 Aug; 50(2):519-528. PubMed ID: 30635952 [TBL] [Abstract][Full Text] [Related]
5. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status. Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122 [TBL] [Abstract][Full Text] [Related]
6. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach. Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238 [TBL] [Abstract][Full Text] [Related]
7. Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: a preliminary investigation in terms of identification and segmentation. Assefa D; Keller H; Ménard C; Laperriere N; Ferrari RJ; Yeung I Med Phys; 2010 Apr; 37(4):1722-36. PubMed ID: 20443493 [TBL] [Abstract][Full Text] [Related]
8. Detecting Brain Tumor using Machines Learning Techniques Based on Different Features Extracting Strategies. Hussain L; Saeed S; Awan IA; Idris A; Nadeem MSA; Chaudhry QU Curr Med Imaging Rev; 2019; 15(6):595-606. PubMed ID: 32008569 [TBL] [Abstract][Full Text] [Related]
9. Multiregional radiomics profiling from multiparametric MRI: Identifying an imaging predictor of IDH1 mutation status in glioblastoma. Li ZC; Bai H; Sun Q; Zhao Y; Lv Y; Zhou J; Liang C; Chen Y; Liang D; Zheng H Cancer Med; 2018 Dec; 7(12):5999-6009. PubMed ID: 30426720 [TBL] [Abstract][Full Text] [Related]
10. Quantification of Radiomics features of Peritumoral Vasogenic Edema extracted from fluid-attenuated inversion recovery images in glioblastoma and isolated brain metastasis, using T1-dynamic contrast-enhanced Perfusion analysis. Parvaze PS; Bhattacharjee R; Verma YK; Singh RK; Yadav V; Singh A; Khanna G; Ahlawat S; Trivedi R; Patir R; Vaishya S; Shah TJ; Gupta RK NMR Biomed; 2023 May; 36(5):e4884. PubMed ID: 36453877 [TBL] [Abstract][Full Text] [Related]
11. Development and validation of a multi-modality fusion deep learning model for differentiating glioblastoma from solitary brain metastases. Shen S; Li C; Fan Y; Lu S; Yan Z; Liu H; Zhou H; Zhang Z Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 49(1):58-67. PubMed ID: 38615167 [TBL] [Abstract][Full Text] [Related]
12. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme. Chen X; Fang M; Dong D; Liu L; Xu X; Wei X; Jiang X; Qin L; Liu Z Acad Radiol; 2019 Oct; 26(10):1292-1300. PubMed ID: 30660472 [TBL] [Abstract][Full Text] [Related]
13. Differentiation between cerebral alveolar echinococcosis and brain metastases with radiomics combined machine learning approach. Yimit Y; Yasin P; Tuersun A; Abulizi A; Jia W; Wang Y; Nijiati M Eur J Med Res; 2023 Dec; 28(1):577. PubMed ID: 38071384 [TBL] [Abstract][Full Text] [Related]
14. MRI texture-based radiomics analysis for the identification of altered functional networks in alcoholic patients and animal models. Ruiz-España S; Ortiz-Ramón R; Pérez-Ramírez Ú; Díaz-Parra A; Ciccocioppo R; Bach P; Vollstädt-Klein S; Kiefer F; Sommer WH; Canals S; Moratal D Comput Med Imaging Graph; 2023 Mar; 104():102187. PubMed ID: 36696812 [TBL] [Abstract][Full Text] [Related]
15. Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma. Park JE; Ham S; Kim HS; Park SY; Yun J; Lee H; Choi SH; Kim N Eur Radiol; 2021 May; 31(5):3127-3137. PubMed ID: 33128598 [TBL] [Abstract][Full Text] [Related]
16. Survival prediction in glioblastoma on post-contrast magnetic resonance imaging using filtration based first-order texture analysis: Comparison of multiple machine learning models. Priya S; Agarwal A; Ward C; Locke T; Monga V; Bathla G Neuroradiol J; 2021 Aug; 34(4):355-362. PubMed ID: 33533273 [TBL] [Abstract][Full Text] [Related]
17. The diagnostic value of magnetic resonance imaging-based texture analysis in differentiating enchondroma and chondrosarcoma. Cilengir AH; Evrimler S; Serel TA; Uluc E; Tosun O Skeletal Radiol; 2023 May; 52(5):1039-1049. PubMed ID: 36434265 [TBL] [Abstract][Full Text] [Related]
18. Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T Sun YZ; Yan LF; Han Y; Nan HY; Xiao G; Tian Q; Pu WH; Li ZY; Wei XC; Wang W; Cui GB BMC Med Imaging; 2021 Feb; 21(1):17. PubMed ID: 33535988 [TBL] [Abstract][Full Text] [Related]
19. Noninvasive O Hajianfar G; Shiri I; Maleki H; Oveisi N; Haghparast A; Abdollahi H; Oveisi M World Neurosurg; 2019 Dec; 132():e140-e161. PubMed ID: 31505292 [TBL] [Abstract][Full Text] [Related]
20. An integrative non-invasive malignant brain tumors classification and Ki-67 labeling index prediction pipeline with radiomics approach. Zhang L; Liu X; Xu X; Liu W; Jia Y; Chen W; Fu X; Li Q; Sun X; Zhang Y; Shu S; Zhang X; Xiang R; Chen H; Sun P; Geng D; Yu Z; Liu J; Wang J Eur J Radiol; 2023 Jan; 158():110639. PubMed ID: 36463703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]