These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 32593921)
21. Response of submerged macrophytes and leaf biofilms to different concentrations of oxytetracycline and sulfadiazine. Zhang H; Ge Z; Li Y; Huang S; Zhang J; Zheng Z Chemosphere; 2022 Dec; 308(Pt 1):136098. PubMed ID: 35995188 [TBL] [Abstract][Full Text] [Related]
22. Effects of microcystin-LR on the tissue growth and physiological responses of the aquatic plant Iris pseudacorus L. Wang N; Wang C Aquat Toxicol; 2018 Jul; 200():197-205. PubMed ID: 29775927 [TBL] [Abstract][Full Text] [Related]
23. Removal of microcystins by phototrophic biofilms. A microcosm study. Babica P; Bláha L; Marsálek B Environ Sci Pollut Res Int; 2005 Nov; 12(6):369-74. PubMed ID: 16305143 [TBL] [Abstract][Full Text] [Related]
24. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Pflugmacher S Aquat Toxicol; 2004 Dec; 70(3):169-78. PubMed ID: 15550274 [TBL] [Abstract][Full Text] [Related]
25. Antioxidative response of the three macrophytes Ceratophyllum demersum, Egeria densa, and Hydrilla verticillata to a time dependent exposure of cell-free crude extracts containing three microcystins from cyanobacterial blooms of Lake Amatitlán, Guatemala. Romero-Oliva CS; Contardo-Jara V; Pflugmacher S Aquat Toxicol; 2015 Jun; 163():130-9. PubMed ID: 25889089 [TBL] [Abstract][Full Text] [Related]
26. Response of the submerged macrophytes Vallisneria natans to snails at different densities. Zhang H; Luo X; Li Q; Huang S; Wang N; Zhang D; Zhang J; Zheng Z Ecotoxicol Environ Saf; 2020 May; 194():110373. PubMed ID: 32151866 [TBL] [Abstract][Full Text] [Related]
27. Ecological damage of submerged macrophytes by fresh cyanobacteria (FC) and cyanobacterial decomposition solution (CDS). Zhang W; Gu P; Zheng X; Wang N; Wu H; He J; Luo X; Zhou L; Zheng Z J Hazard Mater; 2021 Jan; 401():123372. PubMed ID: 32645542 [TBL] [Abstract][Full Text] [Related]
28. [Correlation Between Water Purification Capacity and Bacterial Community Composition of Different Submerged Macrophytes]. Li L; Yue CL; Zhang H; Li HP; Yang L; Wang J Huan Jing Ke Xue; 2019 Nov; 40(11):4962-4970. PubMed ID: 31854562 [TBL] [Abstract][Full Text] [Related]
29. Hepatotoxic cyanobacterial blooms in the lakes of northern Poland. Mankiewicz J; Komárková J; Izydorczyk K; Jurczak T; Tarczynska M; Zalewski M Environ Toxicol; 2005 Oct; 20(5):499-506. PubMed ID: 16161103 [TBL] [Abstract][Full Text] [Related]
30. Joint toxicity mechanisms of perfluorooctanoic acid and sulfadiazine on submerged macrophytes and periphytic biofilms. Zhang W; Li Q; Yang Y; Yu Y; Li S; Liu J; Xiao Y; Wen Y; Wang Q; Lei N; Gu P J Hazard Mater; 2023 Sep; 458():131910. PubMed ID: 37390681 [TBL] [Abstract][Full Text] [Related]
31. Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. Ibelings BW; Havens KE Adv Exp Med Biol; 2008; 619():675-732. PubMed ID: 18461789 [TBL] [Abstract][Full Text] [Related]
33. Microcystin-LR induced oxidative stress, inflammation, and apoptosis in alveolar type II epithelial cells of ICR mice in vitro. Zhong S; Liu Y; Wang F; Wu Z; Zhao S Toxicon; 2020 Jan; 174():19-25. PubMed ID: 31874178 [TBL] [Abstract][Full Text] [Related]
34. Phosphorus mobility among sediments, water and cyanobacteria enhanced by cyanobacteria blooms in eutrophic Lake Dianchi. Cao X; Wang Y; He J; Luo X; Zheng Z Environ Pollut; 2016 Dec; 219():580-587. PubMed ID: 27318542 [TBL] [Abstract][Full Text] [Related]
35. Involvement of oxidative stress and cytoskeletal disruption in microcystin-induced apoptosis in CIK cells. Huang X; Chen L; Liu W; Qiao Q; Wu K; Wen J; Huang C; Tang R; Zhang X Aquat Toxicol; 2015 Aug; 165():41-50. PubMed ID: 26022555 [TBL] [Abstract][Full Text] [Related]
36. Cyanobacterial toxin elimination via bioaccumulation of MC-LR in aquatic macrophytes: an application of the "Green Liver Concept". Nimptsch J; Wiegand C; Pflugmacher S Environ Sci Technol; 2008 Nov; 42(22):8552-7. PubMed ID: 19068847 [TBL] [Abstract][Full Text] [Related]
37. The integrative effect of periphyton biofilm and tape grass (Vallisneria natans) on internal loading of shallow eutrophic lakes. Yang Y; Chen W; Yi Z; Pei G Environ Sci Pollut Res Int; 2018 Jan; 25(2):1773-1783. PubMed ID: 29101702 [TBL] [Abstract][Full Text] [Related]
38. Microcystin-RR uptake and its effects on the growth of submerged macrophyte Vallisneria natans (lour.) hara. Yin L; Huang J; Li D; Liu Y Environ Toxicol; 2005 Jun; 20(3):308-13. PubMed ID: 15892062 [TBL] [Abstract][Full Text] [Related]
39. Effects of microcystin and complex cyanobacterial samples on the growth and oxidative stress parameters in green alga Pseudokirchneriella subcapitata and comparison with the model oxidative stressor--herbicide paraquat. Bártová K; Hilscherová K; Babica P; Maršálek B; Bláha L Environ Toxicol; 2011 Nov; 26(6):641-8. PubMed ID: 20549631 [TBL] [Abstract][Full Text] [Related]
40. Allelopathic effects of harmful algal extracts and exudates on biofilms on leaves of Vallisneria natans. Jiang M; Zhou Y; Wang N; Xu L; Zheng Z; Zhang J Sci Total Environ; 2019 Mar; 655():823-830. PubMed ID: 30481709 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]