BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 32593978)

  • 1. Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma.
    Hashimoto Y; Asaoka R; Kiwaki T; Sugiura H; Asano S; Murata H; Fujino Y; Matsuura M; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K
    Br J Ophthalmol; 2021 Apr; 105(4):507-513. PubMed ID: 32593978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression.
    Xu L; Asaoka R; Kiwaki T; Murata H; Fujino Y; Matsuura M; Hashimoto Y; Asano S; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K
    Am J Ophthalmol; 2020 Oct; 218():304-313. PubMed ID: 32387432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting 10-2 Visual Field From Optical Coherence Tomography in Glaucoma Using Deep Learning Corrected With 24-2/30-2 Visual Field.
    Hashimoto Y; Kiwaki T; Sugiura H; Asano S; Murata H; Fujino Y; Matsuura M; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K; Asaoka R
    Transl Vis Sci Technol; 2021 Nov; 10(13):28. PubMed ID: 34812893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Deep Learning and Transfer Learning to Accurately Diagnose Early-Onset Glaucoma From Macular Optical Coherence Tomography Images.
    Asaoka R; Murata H; Hirasawa K; Fujino Y; Matsuura M; Miki A; Kanamoto T; Ikeda Y; Mori K; Iwase A; Shoji N; Inoue K; Yamagami J; Araie M
    Am J Ophthalmol; 2019 Feb; 198():136-145. PubMed ID: 30316669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT.
    Christopher M; Bowd C; Proudfoot JA; Belghith A; Goldbaum MH; Rezapour J; Fazio MA; Girkin CA; De Moraes G; Liebmann JM; Weinreb RN; Zangwill LM
    Ophthalmology; 2021 Nov; 128(11):1534-1548. PubMed ID: 33901527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the Integrated Visual Field with Wide-Scan Optical Coherence Tomography in Glaucoma Patients.
    Yoshida M; Kunimatsu-Sanuki S; Omodaka K; Nakazawa T
    Curr Eye Res; 2018 Jun; 43(6):754-761. PubMed ID: 29451998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Joint Multitask Learning Model for Cross-sectional and Longitudinal Predictions of Visual Field Using OCT.
    Asaoka R; Xu L; Murata H; Kiwaki T; Matsuura M; Fujino Y; Tanito M; Mori K; Ikeda Y; Kanamoto T; Inoue K; Yamagami J; Yamanishi K
    Ophthalmol Sci; 2021 Dec; 1(4):100055. PubMed ID: 36246943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss.
    Yarmohammadi A; Zangwill LM; Manalastas PIC; Fuller NJ; Diniz-Filho A; Saunders LJ; Suh MH; Hasenstab K; Weinreb RN
    Ophthalmology; 2018 Apr; 125(4):578-587. PubMed ID: 29174012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting glaucoma based on spectral domain optical coherence tomography imaging of peripapillary retinal nerve fiber layer: a comparison study between hand-crafted features and deep learning model.
    Zheng C; Xie X; Huang L; Chen B; Yang J; Lu J; Qiao T; Fan Z; Zhang M
    Graefes Arch Clin Exp Ophthalmol; 2020 Mar; 258(3):577-585. PubMed ID: 31811363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs.
    Medeiros FA; Jammal AA; Thompson AC
    Ophthalmology; 2019 Apr; 126(4):513-521. PubMed ID: 30578810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the Macular Ganglion Cell-Inner Plexiform Layer and the Circumpapillary Retinal Nerve Fiber Layer in Early to Severe Stages of Glaucoma: Correlation with Central Visual Function and Visual Field Indexes.
    Bambo MP; Güerri N; Ferrandez B; Cameo B; Fuertes I; Polo V; Garcia-Martin E
    Ophthalmic Res; 2017; 57(4):216-223. PubMed ID: 28068662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function Relationship in Advanced Glaucoma After Reaching the RNFL Floor.
    Sung MS; Heo H; Park SW
    J Glaucoma; 2019 Nov; 28(11):1006-1011. PubMed ID: 31567911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Visual Field Progression with Baseline and Longitudinal Structural Measurements Using Deep Learning.
    Mohammadzadeh V; Wu S; Besharati S; Davis T; Vepa A; Morales E; Edalati K; Rafiee M; Martinyan A; Zhang D; Scalzo F; Caprioli J; Nouri-Mahdavi K
    Am J Ophthalmol; 2024 Jun; 262():141-152. PubMed ID: 38354971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function relationships between spectral-domain OCT and standard achromatic perimetry.
    Nilforushan N; Nassiri N; Moghimi S; Law SK; Giaconi J; Coleman AL; Caprioli J; Nouri-Mahdavi K
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2740-8. PubMed ID: 22447869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Associations of Ganglion Cell-Inner Plexiform Layer and Optic Nerve Head Parameters with Visual Field Sensitivity in Advanced Glaucoma.
    Hu H; Li P; Yu X; Wei W; He H; Zhang X
    Ophthalmic Res; 2021; 64(2):310-320. PubMed ID: 32731219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning Estimation of 10-2 Visual Field Map Based on Circumpapillary Retinal Nerve Fiber Layer Thickness Measurements.
    Kamalipour A; Moghimi S; Khosravi P; Jazayeri MS; Nishida T; Mahmoudinezhad G; Li EH; Christopher M; Liebmann JM; Fazio MA; Girkin CA; Zangwill L; Weinreb RN
    Am J Ophthalmol; 2023 Feb; 246():163-173. PubMed ID: 36328198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps.
    Christopher M; Bowd C; Belghith A; Goldbaum MH; Weinreb RN; Fazio MA; Girkin CA; Liebmann JM; Zangwill LM
    Ophthalmology; 2020 Mar; 127(3):346-356. PubMed ID: 31718841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical Clues to Predict the Presence of Parafoveal Scotoma on Humphrey 10-2 Visual Field Using a Humphrey 24-2 Visual Field.
    Park HY; Hwang BE; Shin HY; Park CK
    Am J Ophthalmol; 2016 Jan; 161():150-9. PubMed ID: 26476213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual Field Prognosis From Macula and Circumpapillary Spectral Domain Optical Coherence Tomography.
    Scandella D; Gallardo M; Kucur SS; Sznitman R; Unterlauft JD
    Transl Vis Sci Technol; 2024 Jun; 13(6):10. PubMed ID: 38884547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of visual field from swept-source optical coherence tomography using deep learning algorithms.
    Park K; Kim J; Kim S; Shin J
    Graefes Arch Clin Exp Ophthalmol; 2020 Nov; 258(11):2489-2499. PubMed ID: 32845372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.