These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 32595422)

  • 1. 3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds.
    Joung D; Truong V; Neitzke CC; Guo SZ; Walsh PJ; Monat JR; Meng F; Park SH; Dutton JR; Parr AM; McAlpine MC
    Adv Funct Mater; 2018 Sep; 28(39):. PubMed ID: 32595422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair.
    Hamid OA; Eltaher HM; Sottile V; Yang J
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111707. PubMed ID: 33545866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic 3D-printed scaffolds for spinal cord injury repair.
    Koffler J; Zhu W; Qu X; Platoshyn O; Dulin JN; Brock J; Graham L; Lu P; Sakamoto J; Marsala M; Chen S; Tuszynski MH
    Nat Med; 2019 Feb; 25(2):263-269. PubMed ID: 30643285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D bioprinted neural tissue constructs for spinal cord injury repair.
    Liu X; Hao M; Chen Z; Zhang T; Huang J; Dai J; Zhang Z
    Biomaterials; 2021 May; 272():120771. PubMed ID: 33798962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of O-GlcNAc transferase inhibitor promotes neuronal differentiation of neural stem cells in 3D bioprinted supramolecular hydrogel scaffold for spinal cord injury repair.
    Liu X; Song S; Chen Z; Gao C; Li Y; Luo Y; Huang J; Zhang Z
    Acta Biomater; 2022 Oct; 151():148-162. PubMed ID: 36002129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury.
    Song S; Li Y; Huang J; Cheng S; Zhang Z
    Biomater Adv; 2023 May; 148():213385. PubMed ID: 36934714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LncRNA-GAS5 promotes spinal cord repair and the inhibition of neuronal apoptosis via the transplantation of 3D printed scaffold loaded with induced pluripotent stem cell-derived neural stem cells.
    Shao R; Li C; Chen Y; Zhang L; Yang H; Zhang Z; Yue J; Gao W; Zhu H; Pan H; Zhou H; Quan R
    Ann Transl Med; 2021 Jun; 9(11):931. PubMed ID: 34350246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting applications in neural tissue engineering for spinal cord injury repair.
    Bedir T; Ulag S; Ustundag CB; Gunduz O
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110741. PubMed ID: 32204049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D bioprinted human iPSC-derived somatosensory constructs with functional and highly purified sensory neuron networks.
    Hirano M; Huang Y; Vela Jarquin D; De la Garza Hernández RL; Jodat YA; Luna Cerón E; García-Rivera LE; Shin SR
    Biofabrication; 2021 Jun; 13(3):. PubMed ID: 33962404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spatial arrangement of cells in a 3D-printed biomimetic spinal cord promotes directional differentiation and repairs the motor function after spinal cord injury.
    Wang J; Kong X; Li Q; Li C; Yu H; Ning G; Xiang Z; Liu Y; Feng S
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34139682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coaxial 3D printing of hierarchical structured hydrogel scaffolds for on-demand repair of spinal cord injury.
    Li Y; Cheng S; Wen H; Xiao L; Deng Z; Huang J; Zhang Z
    Acta Biomater; 2023 Sep; 168():400-415. PubMed ID: 37479156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss.
    Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W
    Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regionally Specific Human Pre-Oligodendrocyte Progenitor Cells Produce Both Oligodendrocytes and Neurons after Transplantation in a Chronically Injured Spinal Cord Rat Model after Glial Scar Ablation.
    Patil N; Walsh P; Carrabre K; Holmberg EG; Lavoie N; Dutton JR; Parr AM
    J Neurotrauma; 2021 Mar; 38(6):777-788. PubMed ID: 33107383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal Cord Injury Management through the Combination of Stem Cells and Implantable 3D Bioprinted Platforms.
    Zarepour A; Hooshmand S; Gökmen A; Zarrabi A; Mostafavi E
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering.
    Arulmoli J; Wright HJ; Phan DTT; Sheth U; Que RA; Botten GA; Keating M; Botvinick EL; Pathak MM; Zarembinski TI; Yanni DS; Razorenova OV; Hughes CCW; Flanagan LA
    Acta Biomater; 2016 Oct; 43():122-138. PubMed ID: 27475528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implantation of Engineered Axon Tracts to Bridge Spinal Cord Injury Beyond the Glial Scar in Rats.
    Sullivan PZ; AlBayar A; Burrell JC; Browne KD; Arena J; Johnson V; Smith DH; Cullen DK; Ozturk AK
    Tissue Eng Part A; 2021 Oct; 27(19-20):1264-1274. PubMed ID: 33430694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting.
    Ma X; Qu X; Zhu W; Li YS; Yuan S; Zhang H; Liu J; Wang P; Lai CS; Zanella F; Feng GS; Sheikh F; Chien S; Chen S
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2206-11. PubMed ID: 26858399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional printing of microfiber- reinforced hydrogel loaded with oxymatrine for treating spinal cord injury.
    Song S; Zhou J; Wan J; Zhao X; Li K; Yang C; Zheng C; Wang L; Tang Y; Wang C; Liu J
    Int J Bioprint; 2023; 9(3):692. PubMed ID: 37273987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human induced pluripotent stem cells integrate, create synapses and extend long axons after spinal cord injury.
    Lavoie NS; Truong V; Malone D; Pengo T; Patil N; Dutton JR; Parr AM
    J Cell Mol Med; 2022 Apr; 26(7):1932-1942. PubMed ID: 35257489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards 3D Bioprinted Spinal Cord Organoids.
    Han Y; King M; Tikhomirov E; Barasa P; Souza CDS; Lindh J; Baltriukiene D; Ferraiuolo L; Azzouz M; Gullo MR; Kozlova EN
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.