BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32595457)

  • 1. Dopaminergic Modulation of Glomerular Circuits in the Mouse Olfactory Bulb.
    Liu S
    Front Cell Neurosci; 2020; 14():172. PubMed ID: 32595457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraglomerular Excitation of Rat Olfactory Bulb Mitral Cells by Depolarizing GABAergic Synaptic Input.
    Pressler RT; Strowbridge BW
    J Neurosci; 2022 Sep; 42(36):6878-6893. PubMed ID: 35906068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ErbB4-Positive Neuronal Network in the Olfactory Bulb for Olfaction.
    Tan Z; Liu Z; Liu Y; Liu F; Robinson H; Lin TW; Xiong WC; Mei L
    J Neurosci; 2022 Aug; 42(34):6518-6535. PubMed ID: 35853717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopaminergic modulation of olfactory-evoked motor output in sea lampreys (Petromyzon marinus L.).
    Beauséjour PA; Auclair F; Daghfous G; Ngovandan C; Veilleux D; Zielinski B; Dubuc R
    J Comp Neurol; 2020 Jan; 528(1):114-134. PubMed ID: 31286519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the Role of Dopaminergic and Calretinin Interneurons in the Olfactory Bulb.
    Capsoni S; Fogli Iseppe A; Casciano F; Pignatelli A
    Front Neural Circuits; 2021; 15():718221. PubMed ID: 34690707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embryonic and postnatal neurogenesis produce functionally distinct subclasses of dopaminergic neuron.
    Galliano E; Franzoni E; Breton M; Chand AN; Byrne DJ; Murthy VN; Grubb MS
    Elife; 2018 Apr; 7():. PubMed ID: 29676260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast-spiking interneuron detonation drives high-fidelity inhibition in the olfactory bulb.
    Burton SD; Malyshko CM; Urban NN
    bioRxiv; 2024 May; ():. PubMed ID: 38766161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatostatin Serves a Modulatory Role in the Mouse Olfactory Bulb: Neuroanatomical and Behavioral Evidence.
    Nocera S; Simon A; Fiquet O; Chen Y; Gascuel J; Datiche F; Schneider N; Epelbaum J; Viollet C
    Front Behav Neurosci; 2019; 13():61. PubMed ID: 31024270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of olfactory bulb glomerular-layer computations in a digital neurosynaptic core.
    Imam N; Cleland TA; Manohar R; Merolla PA; Arthur JV; Akopyan F; Modha DS
    Front Neurosci; 2012; 6():83. PubMed ID: 22685425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct Developmental Features of Olfactory Bulb Interneurons.
    Kim JY; Choe J;
    Mol Cells; 2020 Mar; 43(3):215-221. PubMed ID: 32208366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inward rectifier potassium (Kir) current in dopaminergic periglomerular neurons of the mouse olfactory bulb.
    Borin M; Fogli Iseppe A; Pignatelli A; Belluzzi O
    Front Cell Neurosci; 2014; 8():223. PubMed ID: 25152712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Young adult-born neurons improve odor coding by mitral cells.
    Shani-Narkiss H; Vinograd A; Landau ID; Tasaka G; Yayon N; Terletsky S; Groysman M; Maor I; Sompolinsky H; Mizrahi A
    Nat Commun; 2020 Nov; 11(1):5867. PubMed ID: 33203831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.
    Sun X; Liu X; Starr ER; Liu S
    J Neurosci; 2020 Aug; 40(32):6189-6206. PubMed ID: 32605937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manganese and Vanadium Co-Exposure Induces Severe Neurotoxicity in the Olfactory System: Relevance to Metal-Induced Parkinsonism.
    Ngwa HA; Bargues-Carot A; Jin H; Anantharam V; Kanthasamy A; Kanthasamy AG
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-transmitting interneurons in the mouse olfactory bulb regulate olfactory detection and discrimination.
    Lyons-Warren AM; Tantry EK; Moss EH; Kochukov MY; Belfort BDW; Ortiz-Guzman J; Freyberg Z; Arenkiel BR
    Cell Rep; 2023 Dec; 42(12):113471. PubMed ID: 37980561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Olfactory dysfunction and its related molecular mechanisms in Parkinson's disease.
    Gu Y; Zhang J; Zhao X; Nie W; Xu X; Liu M; Zhang X
    Neural Regen Res; 2024 Mar; 19(3):583-590. PubMed ID: 37721288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurotransmitter regulation rather than cell-intrinsic properties shapes the high-pass filtering properties of olfactory bulb glomeruli.
    Zak JD; Schoppa NE
    J Physiol; 2022 Jan; 600(2):393-417. PubMed ID: 34891217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in the pathology of prodromal non-motor symptoms olfactory deficit and depression in Parkinson's disease: clues to early diagnosis and effective treatment.
    Bang Y; Lim J; Choi HJ
    Arch Pharm Res; 2021 Jun; 44(6):588-604. PubMed ID: 34145553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brief Sensory Deprivation Triggers Cell Type-Specific Structural and Functional Plasticity in Olfactory Bulb Neurons.
    Galliano E; Hahn C; Browne LP; R Villamayor P; Tufo C; Crespo A; Grubb MS
    J Neurosci; 2021 Mar; 41(10):2135-2151. PubMed ID: 33483429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noradrenergic Activity in the Olfactory Bulb Is a Key Element for the Stability of Olfactory Memory.
    Linster C; Midroit M; Forest J; Thenaisie Y; Cho C; Richard M; Didier A; Mandairon N
    J Neurosci; 2020 Nov; 40(48):9260-9271. PubMed ID: 33097638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.