These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 32595661)
1. Trunk Girdling Increased Stomatal Conductance in Cabernet Sauvignon Grapevines, Reduced Glutamine, and Increased Malvidin-3-Glucoside and Quercetin-3-Glucoside Concentrations in Skins and Pulp at Harvest. Pereira GE; Padhi EMT; Girardello RC; Medina-Plaza C; Tseng D; Bruce RC; Erdmann JN; Kurtural SK; Slupsky CM; Oberholster A Front Plant Sci; 2020; 11():707. PubMed ID: 32595661 [TBL] [Abstract][Full Text] [Related]
2. Impact of grapevine red blotch disease on primary and secondary metabolites in 'Cabernet Sauvignon' grape tissues. Pereira GE; Padhi EMT; Sudarshana MR; Fialho FB; Medina-Plaza C; Girardello RC; Tseng D; Bruce RC; Erdmann JN; Slupsky CM; Oberholster A Food Chem; 2021 Apr; 342():128312. PubMed ID: 33268164 [TBL] [Abstract][Full Text] [Related]
3. Foliar-sprayed manganese sulfate improves flavonoid content in grape berry skin of Cabernet Sauvignon (Vitis vinifera L.) growing on alkaline soil and wine chromatic characteristics. Chen H; Yang J; Deng X; Lei Y; Xie S; Guo S; Ren R; Li J; Zhang Z; Xu T Food Chem; 2020 Jun; 314():126182. PubMed ID: 31968293 [TBL] [Abstract][Full Text] [Related]
4. Irrigation and rootstock effects on the phenolic concentration and aroma potential of Vitis vinifera L. cv. cabernet sauvignon grapes. Koundouras S; Hatzidimitriou E; Karamolegkou M; Dimopoulou E; Kallithraka S; Tsialtas JT; Zioziou E; Nikolaou N; Kotseridis Y J Agric Food Chem; 2009 Sep; 57(17):7805-13. PubMed ID: 19722708 [TBL] [Abstract][Full Text] [Related]
5. Effects of vine top shading on the accumulation of C6/C9 compounds in 'Cabernet Sauvignon' (Vitis vinifera L.) grape berries in northwestern China. Zhang Z; Qiao D; He L; Pan Q; Wang S J Sci Food Agric; 2022 Mar; 102(5):1862-1871. PubMed ID: 34468988 [TBL] [Abstract][Full Text] [Related]
6. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis. Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654 [TBL] [Abstract][Full Text] [Related]
8. Tissue-Specific Hormonal Variations in Grapes of Irrigated and Non-irrigated Grapevines ( Ribalta-Pizarro C; Muñoz P; Munné-Bosch S Front Plant Sci; 2021; 12():621587. PubMed ID: 33597962 [TBL] [Abstract][Full Text] [Related]
9. Impact of Grapevine Red Blotch Disease on Grape Composition of Vitis vinifera Cabernet Sauvignon, Merlot, and Chardonnay. Girardello RC; Cooper ML; Smith RJ; Lerno LA; Bruce RC; Eridon S; Oberholster A J Agric Food Chem; 2019 May; 67(19):5496-5511. PubMed ID: 31013081 [TBL] [Abstract][Full Text] [Related]
10. Molecular and physiologic mechanisms of advanced ripening by trunk girdling at early veraison of 'Summer Black' grape. Peng Y; Gu X; Zhou Q; Huang J; Liu Z; Zhou Y; Zheng Y Front Plant Sci; 2022; 13():1012741. PubMed ID: 36330263 [TBL] [Abstract][Full Text] [Related]
11. Source-Sink manipulations have major implications for grapevine berry and wine flavonoids and aromas that go beyond the changes in berry sugar accumulation. Martínez-Lüscher J; Kurtural SK Food Res Int; 2023 Jul; 169():112826. PubMed ID: 37254402 [TBL] [Abstract][Full Text] [Related]
13. Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet Sauvignon grape berries. Sun RZ; Cheng G; Li Q; Zhu YR; Zhang X; Wang Y; He YN; Li SY; He L; Chen W; Pan QH; Duan CQ; Wang J BMC Plant Biol; 2019 Dec; 19(1):583. PubMed ID: 31878879 [TBL] [Abstract][Full Text] [Related]
14. Girdling of table grapes at fruit set can divert the phenylpropanoid pathway towards accumulation of proanthocyanidins and change the volatile composition. Tyagi K; Maoz I; Lewinsohn E; Lerno L; Ebeler SE; Lichter A Plant Sci; 2020 Jul; 296():110495. PubMed ID: 32540014 [TBL] [Abstract][Full Text] [Related]
16. Influence of canopy-applied chitosan on the composition of organic cv. Sangiovese and Cabernet Sauvignon berries and wines. Tessarin P; Chinnici F; Donnini S; Liquori E; Riponi C; Rombolà AD Food Chem; 2016 Nov; 210():512-9. PubMed ID: 27211677 [TBL] [Abstract][Full Text] [Related]
17. Effects of gibberellic acid (GA Gao XT; Wu MH; Sun D; Li HQ; Chen WK; Yang HY; Liu FQ; Wang QC; Wang YY; Wang J; He F J Sci Food Agric; 2020 Jul; 100(9):3729-3740. PubMed ID: 32266978 [TBL] [Abstract][Full Text] [Related]
18. Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. Cv. cabernet sauvignon grape berries. Bindon KA; Dry PR; Loveys BR J Agric Food Chem; 2007 May; 55(11):4493-500. PubMed ID: 17469842 [TBL] [Abstract][Full Text] [Related]
19. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles. Cheng G; He YN; Yue TX; Wang J; Zhang ZW Molecules; 2014 Sep; 19(9):13683-703. PubMed ID: 25185071 [TBL] [Abstract][Full Text] [Related]
20. Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. Degu A; Hochberg U; Sikron N; Venturini L; Buson G; Ghan R; Plaschkes I; Batushansky A; Chalifa-Caspi V; Mattivi F; Delledonne M; Pezzotti M; Rachmilevitch S; Cramer GR; Fait A BMC Plant Biol; 2014 Jul; 14():188. PubMed ID: 25064275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]