These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32596025)

  • 1. B(C
    Basak S; Alvarez-Montoya A; Winfrey L; Melen RL; Morrill LC; Pulis AP
    ACS Catal; 2020 Apr; 10(8):4835-4840. PubMed ID: 32596025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Literature Survey and Further Studies on the 3-Alkylation of N-Unprotected 3-Monosubstituted Oxindoles. Practical Synthesis of N-Unprotected 3,3-Disubstituted Oxindoles and Subsequent Transformations on the Aromatic Ring.
    Kókai E; Simig G; Volk B
    Molecules; 2016 Dec; 22(1):. PubMed ID: 28035962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-Catalyzed Borrowing Hydrogen C-Alkylation of Oxindoles with Alcohols.
    Dambatta MB; Polidano K; Northey AD; Williams JMJ; Morrill LC
    ChemSusChem; 2019 Jun; 12(11):2345-2349. PubMed ID: 30958919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric substitution at the tetrasubstituted chiral carbon: catalytic ring-opening alkylation of racemic 2,2-disubstituted aziridines with 3-substituted oxindoles.
    Ohmatsu K; Ando Y; Ooi T
    J Am Chem Soc; 2013 Dec; 135(50):18706-9. PubMed ID: 24304152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenium-catalyzed direct C3 alkylation of indoles with α,β-unsaturated ketones.
    Li SS; Lin H; Zhang XM; Dong L
    Org Biomol Chem; 2015 Jan; 13(4):1254-63. PubMed ID: 25434788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron- and base-catalyzed
    Saha R; Hembram BC; Panda S; Jana NC; Bagh B
    Org Biomol Chem; 2024 Aug; 22(31):6321-6330. PubMed ID: 39039931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Branch-selective synthesis of oxindole and indene scaffolds: transition metal-controlled intramolecular aryl amidation leading to c3 reverse-prenylated oxindoles.
    Ignatenko VA; Deligonul N; Viswanathan R
    Org Lett; 2010 Aug; 12(16):3594-7. PubMed ID: 20704399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organocatalytic and electrophilic approach to oxindoles with C3-quaternary stereocenters.
    Peng J; Huang X; Cui HL; Chen YC
    Org Lett; 2010 Oct; 12(19):4260-3. PubMed ID: 20812696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Palladium-catalyzed direct 2-alkylation of indoles by norbornene-mediated regioselective cascade C-H activation.
    Jiao L; Bach T
    J Am Chem Soc; 2011 Aug; 133(33):12990-3. PubMed ID: 21806073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Boron-Catalyzed N-Alkylation of Amines with Carboxylic Acids.
    Zhang Q; Fu MC; Yu HZ; Fu Y
    J Org Chem; 2016 Aug; 81(15):6235-43. PubMed ID: 27441997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective Alkylation of 2-Oxindoles Catalyzed by a Bifunctional Phase-Transfer Catalyst: Synthesis of (-)-Debromoflustramine B.
    Craig R; Sorrentino E; Connon SJ
    Chemistry; 2018 Mar; 24(18):4528-4531. PubMed ID: 29513404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.
    Wang MZ; Zhou CY; Wong MK; Che CM
    Chemistry; 2010 May; 16(19):5723-35. PubMed ID: 20391566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic Asymmetric Ring-Opening Reactions of Aziridines with 3-Aryl-Oxindoles.
    Wang L; Li D; Yang D; Wang K; Wang J; Wang P; Su W; Wang R
    Chem Asian J; 2016 Mar; 11(5):691-5. PubMed ID: 26763482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric direct α-alkylation of 2-oxindoles with Michler's hydrol catalyzed by bis-cinchona alkaloid-Brønsted acid via an SN1-type pathway.
    Zhang T; Qiao Z; Wang Y; Zhong N; Liu L; Wang D; Chen YJ
    Chem Commun (Camb); 2013 Feb; 49(16):1636-8. PubMed ID: 23340601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic enantioselective stereoablative alkylation of 3-halooxindoles: facile access to oxindoles with C3 all-carbon quaternary stereocenters.
    Ma S; Han X; Krishnan S; Virgil SC; Stoltz BM
    Angew Chem Int Ed Engl; 2009; 48(43):8037-41. PubMed ID: 19768820
    [No Abstract]   [Full Text] [Related]  

  • 16. B(C
    Chan JZ; Chang Y; Wasa M
    Org Lett; 2019 Feb; 21(4):984-988. PubMed ID: 30693779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CuH-Catalyzed Enantioselective Alkylation of Indole Derivatives with Ligand-Controlled Regiodivergence.
    Ye Y; Kim ST; Jeong J; Baik MH; Buchwald SL
    J Am Chem Soc; 2019 Mar; 141(9):3901-3909. PubMed ID: 30696242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Catalytic Asymmetric and Regiodivergent N1- and C3-Allenylic Alkylation of Indoles.
    Zha T; Rui J; Zhang Z; Zhang D; Yang Z; Yu P; Wang Y; Peng F; Shao Z
    Angew Chem Int Ed Engl; 2023 May; 62(21):e202300844. PubMed ID: 36942762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron deficient borane-mediated hydride abstraction in amines: stoichiometric and catalytic processes.
    Basak S; Winfrey L; Kustiana BA; Melen RL; Morrill LC; Pulis AP
    Chem Soc Rev; 2021 Mar; 50(6):3720-3737. PubMed ID: 33533343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding the scope of cinchona alkaloid-catalyzed enantioselective alpha-aminations of oxindoles: a versatile approach to optically active 3-amino-2-oxindole derivatives.
    Bui T; Borregan M; Barbas CF
    J Org Chem; 2009 Dec; 74(23):8935-8. PubMed ID: 19950878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.