These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 32596048)

  • 1. Beyond polyphagy and opportunism: natural prey of hunting spiders in the canopy of apple trees.
    Mezőfi L; Markó G; Nagy C; Korányi D; Markó V
    PeerJ; 2020; 8():e9334. PubMed ID: 32596048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey.
    Roubinet E; Birkhofer K; Malsher G; Staudacher K; Ekbom B; Traugott M; Jonsson M
    Ecol Appl; 2017 Jun; 27(4):1167-1177. PubMed ID: 28132400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insecticides alter prey choice of potential biocontrol agent Philodromus cespitum (Araneae, Philodromidae).
    Petcharad B; Košulič O; Michalko R
    Chemosphere; 2018 Jul; 202():491-497. PubMed ID: 29579684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An updated perspective on spiders as generalist predators in biological control.
    Michalko R; Pekár S; Entling MH
    Oecologia; 2019 Jan; 189(1):21-36. PubMed ID: 30535723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different hunting strategies of generalist predators result in functional differences.
    Michalko R; Pekár S
    Oecologia; 2016 Aug; 181(4):1187-97. PubMed ID: 27098662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tree species identity, canopy structure and prey availability differentially affect canopy spider diversity and trophic composition.
    Wildermuth B; Dönges C; Matevski D; Penanhoat A; Seifert CL; Seidel D; Scheu S; Schuldt A
    Oecologia; 2023 Oct; 203(1-2):37-51. PubMed ID: 37709958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual and species-specific traits explain niche size and functional role in spiders as generalist predators.
    Sanders D; Vogel E; Knop E
    J Anim Ecol; 2015 Jan; 84(1):134-42. PubMed ID: 25041766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative effects of ant foraging on spiders in Douglas-fir canopies.
    Halaj J; Ross DW; Moldenke AR
    Oecologia; 1997 Jan; 109(2):313-322. PubMed ID: 28307185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capture efficiency and trophic adaptations of a specialist and generalist predator: A comparison.
    Michálek O; Petráková L; Pekár S
    Ecol Evol; 2017 Apr; 7(8):2756-2766. PubMed ID: 28428866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Management intensity and vegetation complexity affect web-building spiders and their prey.
    Diehl E; Mader VL; Wolters V; Birkhofer K
    Oecologia; 2013 Oct; 173(2):579-89. PubMed ID: 23494286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nontarget Impacts of Herbicides on Spiders in Orchards.
    Schmidt-Jeffris RA; Moretti EA; Bergeron PE; Zilnik G
    J Econ Entomol; 2022 Feb; 115(1):65-73. PubMed ID: 34850025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-pest prey do not disrupt aphid predation by a web-building spider.
    Welch KD; Whitney TD; Harwood JD
    Bull Entomol Res; 2016 Feb; 106(1):91-8. PubMed ID: 26584533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nest usurpation: a specialised hunting strategy used to overcome dangerous spider prey.
    Michálek O; Lubin Y; Pekár S
    Sci Rep; 2019 Mar; 9(1):5386. PubMed ID: 30926825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of predation to the biological control of a key herbivorous pest in citrus agroecosystems.
    Bouvet JPR; Urbaneja A; Pérez-Hedo M; Monzó C
    J Anim Ecol; 2019 Jun; 88(6):915-926. PubMed ID: 30895609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis.
    Langellotto GA; Denno RF
    Oecologia; 2004 Mar; 139(1):1-10. PubMed ID: 14872336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predator hunting mode influences patterns of prey use from grazing and epigeic food webs.
    Wimp GM; Murphy SM; Lewis D; Douglas MR; Ambikapathi R; Van-Tull L; Gratton C; Denno RF
    Oecologia; 2013 Feb; 171(2):505-15. PubMed ID: 22926724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular gut content analysis indicates the inter- and intra-guild predation patterns of spiders in conventionally managed vegetable fields.
    Saqib HSA; Liang P; You M; Gurr GM
    Ecol Evol; 2021 Jul; 11(14):9543-9552. PubMed ID: 34306641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern of seasonal variation in rates of predation between spider families is temporally stable in a food web with widespread intraguild predation.
    Wise DH; Mores RM; M Pajda-De La O J; McCary MA
    PLoS One; 2023; 18(10):e0293176. PubMed ID: 37903108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Body size mediates the relationship between spider (Arachnida: Araneae) assemblage composition and prey consumption rate: results of a mesocosm experiment in the Yukon, Canada.
    Turney S; Buddle CM
    Oecologia; 2019 Mar; 189(3):757-768. PubMed ID: 30725372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tritrophic interactions in a pollination system: impacts of species composition and size of flower patches on the hunting success of a flower-dwelling spider.
    Schmalhofer VR
    Oecologia; 2001 Oct; 129(2):292-303. PubMed ID: 28547608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.