BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32596096)

  • 1. Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy.
    Parvini CH; Saadi MASR; Solares SD
    Beilstein J Nanotechnol; 2020; 11():922-937. PubMed ID: 32596096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy.
    Parvini CH; Saadi MASR; Solares SD
    Beilstein J Nanotechnol; 2021; 12():137-138. PubMed ID: 33564608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions.
    Solares SD
    Beilstein J Nanotechnol; 2016; 7():554-71. PubMed ID: 27335746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method for obtaining model-free viscoelastic material properties from atomic force microscopy experiments using discrete integral transform techniques.
    Uluutku B; López-Guerra EA; Solares SD
    Beilstein J Nanotechnol; 2021; 12():1063-1077. PubMed ID: 34631339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An explicit model to extract viscoelastic properties of cells from AFM force-indentation curves.
    Abuhattum S; Mokbel D; Müller P; Soteriou D; Guck J; Aland S
    iScience; 2022 Apr; 25(4):104016. PubMed ID: 35310950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges.
    López-Guerra EA; Solares SD
    Beilstein J Nanotechnol; 2020; 11():1409-1418. PubMed ID: 33014681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods.
    Cartagena A; Raman A
    Biophys J; 2014 Mar; 106(5):1033-43. PubMed ID: 24606928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The head and neck cancer (HN-5) cell line properties extraction by AFM.
    Korayem MH; Heidary K; Rastegar Z
    J Biol Eng; 2020; 14():10. PubMed ID: 32206087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping cellular nanoscale viscoelasticity and relaxation times relevant to growth of living Arabidopsis thaliana plants using multifrequency AFM.
    Seifert J; Kirchhelle C; Moore I; Contera S
    Acta Biomater; 2021 Feb; 121():371-382. PubMed ID: 33309827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic Force Microscopy: An Introduction.
    Piontek MC; Roos WH
    Methods Mol Biol; 2018; 1665():243-258. PubMed ID: 28940073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Rheology: Dynamic Mechanical Analysis over a Broad and Continuous Frequency Range Using Photothermal Actuation Atomic Force Microscopy.
    Piacenti AR; Adam C; Hawkins N; Wagner R; Seifert J; Taniguchi Y; Proksch R; Contera S
    Macromolecules; 2024 Feb; 57(3):1118-1127. PubMed ID: 38370912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy.
    Solares SD
    Beilstein J Nanotechnol; 2015; 6():2233-41. PubMed ID: 26734515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM.
    Benaglia S; Amo CA; Garcia R
    Nanoscale; 2019 Aug; 11(32):15289-15297. PubMed ID: 31386741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic Force Microscopy: An Introduction.
    Feng Y; Roos WH
    Methods Mol Biol; 2024; 2694():295-316. PubMed ID: 37824010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation.
    Andriotis OG; Manuyakorn W; Zekonyte J; Katsamenis OL; Fabri S; Howarth PH; Davies DE; Thurner PJ
    J Mech Behav Biomed Mater; 2014 Nov; 39():9-26. PubMed ID: 25081997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force microscopy as an imaging tool to study the bio/nonbio complexes.
    Bednarikova Z; Gazova Z; Valle F; Bystrenova E
    J Microsc; 2020 Dec; 280(3):241-251. PubMed ID: 32519330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracting the elasticity of the human skin in microscale and in-vivo from atomic force microscopy experiments using viscoelastic models.
    Iravanimanesh S; Nazari MA; Jafarbeglou F; Mahjoob M; Azadi M
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(2):188-202. PubMed ID: 32969746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring viscoelasticity of soft samples using atomic force microscopy.
    Tripathy S; Berger EJ
    J Biomech Eng; 2009 Sep; 131(9):094507. PubMed ID: 19725704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells.
    Nguyen N; Shao Y; Wineman A; Fu J; Waas A
    Math Biosci; 2016 Jul; 277():77-88. PubMed ID: 27107978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic properties of demineralized human dentin measured in water with atomic force microscope (AFM)-based indentation.
    Balooch M; Wu-Magidi IC; Balazs A; Lundkvist AS; Marshall SJ; Marshall GW; Siekhaus WJ; Kinney JH
    J Biomed Mater Res; 1998 Jun; 40(4):539-44. PubMed ID: 9599029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.