These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1076 related articles for article (PubMed ID: 32596210)

  • 41. Facile Multistep Synthesis of ZnO-Coated β-NaYF
    Karami A; Farivar F; de Prinse TJ; Rabiee H; Kidd S; Sumby CJ; Bi J
    ACS Appl Bio Mater; 2021 Aug; 4(8):6125-6136. PubMed ID: 35006903
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Towards core-shell engineering for efficient luminescence and temperature sensing.
    Xu H; Li K; Dai M; Fu Z
    J Colloid Interface Sci; 2024 Nov; 673():249-257. PubMed ID: 38875790
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Energy transfer from Er to Nd ions by the thermal effect and promotion of the photocatalysis of the NaYF
    Bao Y; Zhang Z; Cao B; Liu Y; Shang J; Yang Y; Dong B
    Nanoscale; 2019 Apr; 11(15):7433-7439. PubMed ID: 30938729
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NaYF
    Homann C; Krukewitt L; Frenzel F; Grauel B; Würth C; Resch-Genger U; Haase M
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8765-8769. PubMed ID: 29732658
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4:Yb,Tm/NaGdF4 core-shell upconverting nanoparticles to gold nanorods.
    Chen H; Guan Y; Wang S; Ji Y; Gong M; Wang L
    Langmuir; 2014 Nov; 30(43):13085-91. PubMed ID: 25296290
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quenching of the upconversion luminescence of NaYF₄:Yb³⁺,Er³⁺ and NaYF₄:Yb³⁺,Tm³⁺ nanophosphors by water: the role of the sensitizer Yb³⁺ in non-radiative relaxation.
    Arppe R; Hyppänen I; Perälä N; Peltomaa R; Kaiser M; Würth C; Christ S; Resch-Genger U; Schäferling M; Soukka T
    Nanoscale; 2015 Jul; 7(27):11746-57. PubMed ID: 26104183
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of Au-Ag nanocage@NaYF
    Chen X; Zhou D; Xu W; Zhu J; Pan G; Yin Z; Wang H; Zhu Y; Shaobo C; Song H
    Sci Rep; 2017 Jan; 7():41079. PubMed ID: 28106128
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis, Optical Properties, and Sensing Applications of LaF
    Chien HW; Huang CH; Yang CH; Wang TL
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33321848
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence.
    Li X; Guo Z; Zhao T; Lu Y; Zhou L; Zhao D; Zhang F
    Angew Chem Int Ed Engl; 2016 Feb; 55(7):2464-9. PubMed ID: 26762564
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb(3+),Er(3.).
    Jung T; Jo HL; Nam SH; Yoo B; Cho Y; Kim J; Kim HM; Hyeon T; Suh YD; Lee H; Lee KT
    Phys Chem Chem Phys; 2015 May; 17(20):13201-5. PubMed ID: 25929753
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NIR photo-driven upconversion in NaYF
    Mancic L; Djukic-Vukovic A; Dinic I; Nikolic MG; Rabasovic MD; Krmpot AJ; Costa AMLM; Trisic D; Lazarevic M; Mojovic L; Milosevic O
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():597-605. PubMed ID: 30033292
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Shaping Luminescent Properties of Yb
    Pilch A; Würth C; Kaiser M; Wawrzyńczyk D; Kurnatowska M; Arabasz S; Prorok K; Samoć M; Strek W; Resch-Genger U; Bednarkiewicz A
    Small; 2017 Dec; 13(47):. PubMed ID: 29116668
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A facile fabrication of upconversion luminescent and mesoporous core-shell structured β-NaYF
    Li C; Hou Z; Dai Y; Yang D; Cheng Z; Ma P; Lin J
    Biomater Sci; 2013 Feb; 1(2):213-223. PubMed ID: 32481801
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly colloidally stable trimodal
    Kostiv U; Kučka J; Lobaz V; Kotov N; Janoušková O; Šlouf M; Krajnik B; Podhorodecki A; Francová P; Šefc L; Jirák D; Horák D
    Sci Rep; 2020 Nov; 10(1):20016. PubMed ID: 33208804
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nd
    Ding MY; Hou JJ; Yuan YJ; Bai WF; Lu CH; Xi JH; Ji ZG; Chen DQ
    Nanotechnology; 2018 Aug; 29(34):345704. PubMed ID: 29869998
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Understanding the effect of Mn
    Moghadam RZ; Dizagi HR; Agren H; Ehsani MH
    Sci Rep; 2023 Oct; 13(1):17556. PubMed ID: 37845290
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection of nitroaromatics in aqueous media based on luminescence resonance energy transfer using upconversion nanoparticles as energy donors.
    Liu L; Hua R; Chen B; Qi X; Zhang W; Zhang X; Liu Z; Ding T; Yang S; Zhang T; Cheng L
    Nanotechnology; 2019 Sep; 30(37):375703. PubMed ID: 31163404
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rare-Earth-Based Nanoparticles with Simultaneously Enhanced Near-Infrared (NIR)-Visible (Vis) and NIR-NIR Dual-Conversion Luminescence for Multimodal Imaging.
    Ma D; Xu X; Hu M; Wang J; Zhang Z; Yang J; Meng L
    Chem Asian J; 2016 Apr; 11(7):1050-8. PubMed ID: 26788691
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dually functioned core-shell NaYF
    Zhang Y; Chen B; Xu S; Li X; Zhang J; Sun J; Zheng H; Tong L; Sui G; Zhong H; Xia H; Hua R
    Sci Rep; 2017 Sep; 7(1):11849. PubMed ID: 28928385
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimising FRET-efficiency of Nd
    Lin SL; Chang CA
    Nanoscale; 2020 Apr; 12(16):8742-8749. PubMed ID: 32307477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 54.