These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 32596463)
1. Charge-reversal surfactant antibiotic material for reducing microbial corrosion in petroleum exploitation and transportation. Zeng L; Chang Y; Wu Y; Yang J; Xu JF; Zhang X Sci Adv; 2020 Jun; 6(25):eaba7524. PubMed ID: 32596463 [TBL] [Abstract][Full Text] [Related]
2. Corrosion Behavior on 20# Pipeline Steel by Sulfate-Reducing Bacteria in Simulated NaCl Alkali/Surfactant/Polymer Produced Solution. Zhang L; Yu X; Sun H; Ge Y; Wang C; Li L; Kang J; Qian H; Gao Q ACS Omega; 2023 Apr; 8(15):13955-13966. PubMed ID: 37091408 [TBL] [Abstract][Full Text] [Related]
3. Study on corrosion behavior of X80 steel under stripping coating by sulfate reducing bacteria. Cui YY; Qin YX; Ding QM; Gao YN BMC Biotechnol; 2021 Jan; 21(1):5. PubMed ID: 33422076 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the biofilm structure and microbial diversity of sulfate-reducing bacteria from petroleum produced water supplemented by different carbon sources. Santos JCD; Lopes DRG; Silva LCF; Ramos JLL; Dias RS; Lima HS; Sousa MP; Waldow VA; Paula SO; Ferreira SO; Silva CCD J Environ Manage; 2022 Feb; 304():114189. PubMed ID: 34864413 [TBL] [Abstract][Full Text] [Related]
5. Hybrid soliwave technique for mitigating sulfate-reducing bacteria in controlling biocorrosion: a case study on crude oil sample. Mohd Ali MKFB; Abu Bakar A; Md Noor N; Yahaya N; Ismail M; Rashid AS Environ Technol; 2017 Oct; 38(19):2427-2439. PubMed ID: 27875932 [TBL] [Abstract][Full Text] [Related]
6. The potential impact of using a surfactant and an alcoholic co-surfactant on SRB activity during EOR. Chinalia FA; Andrade MB; Vale TOD; Santos SCD; Moura-Costa LF; Almeida PF Environ Technol; 2019 Jul; 40(16):2100-2106. PubMed ID: 29405085 [TBL] [Abstract][Full Text] [Related]
7. Compositions and Abundances of Sulfate-Reducing and Sulfur-Oxidizing Microorganisms in Water-Flooded Petroleum Reservoirs with Different Temperatures in China. Tian H; Gao P; Chen Z; Li Y; Li Y; Wang Y; Zhou J; Li G; Ma T Front Microbiol; 2017; 8():143. PubMed ID: 28210252 [TBL] [Abstract][Full Text] [Related]
8. Microbial corrosion behavior of pipeline steels in simulation environment of natural gas transportation pipeline. Zhu L; Tang Y; Jiang J; Zhang Y; Wu M; Tang C; Wu T; Zhao K RSC Adv; 2023 Dec; 13(51):36168-36180. PubMed ID: 38090086 [TBL] [Abstract][Full Text] [Related]
9. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Enning D; Garrelfs J Appl Environ Microbiol; 2014 Feb; 80(4):1226-36. PubMed ID: 24317078 [TBL] [Abstract][Full Text] [Related]
10. [Distribution and diversity of sulfate-reducing bacteria in a crude oil gathering and transferring system]. Luo L; Liu YJ; Wang XC Huan Jing Ke Xue; 2010 Sep; 31(9):2160-5. PubMed ID: 21072940 [TBL] [Abstract][Full Text] [Related]
11. Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion. Nemati M; Jenneman GE; Voordouw G Biotechnol Prog; 2001; 17(5):852-9. PubMed ID: 11587574 [TBL] [Abstract][Full Text] [Related]
12. Nitrate and oxygen significantly changed the abundance rather than structure of sulphate-reducing and sulphur-oxidising bacteria in water retrieved from petroleum reservoirs. Tian H; Gao P; Qi C; Li G; Ma T Environ Microbiol Rep; 2024 Apr; 16(2):e13248. PubMed ID: 38581137 [TBL] [Abstract][Full Text] [Related]
13. Metagenomics diversity analysis of sulfate-reducing bacteria and their impact on biocorrosion and mitigation approach using an organometallic inhibitor. Parthipan P; Cheng L; Dhandapani P; Rajasekar A Sci Total Environ; 2023 Jan; 856(Pt 2):159203. PubMed ID: 36202367 [TBL] [Abstract][Full Text] [Related]
14. Synergistic effect of alternating current and sulfate-reducing bacteria on corrosion behavior of X80 steel in coastal saline soil. Qin Q; Xu J; Wei B; Fu Q; Gao L; Yu C; Sun C; Wang Z Bioelectrochemistry; 2021 Dec; 142():107911. PubMed ID: 34364027 [TBL] [Abstract][Full Text] [Related]
15. Microbial Corrosion in Orthodontics. Gopalakrishnan U; Felicita S; Ronald B; Appavoo E; Patil S J Contemp Dent Pract; 2022 Jun; 23(6):569-571. PubMed ID: 36259293 [TBL] [Abstract][Full Text] [Related]
16. d-tyrosine enhances disoctyl dimethyl ammonium chloride on alleviating SRB corrosion. Zhou J; Li H; Gong S; Wang S; Yuan X; Song C Heliyon; 2023 Nov; 9(11):e21755. PubMed ID: 38027556 [TBL] [Abstract][Full Text] [Related]
17. Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in oil reservoir and biological control of SRB: a review. Gao P; Fan K Arch Microbiol; 2023 Apr; 205(5):162. PubMed ID: 37010699 [TBL] [Abstract][Full Text] [Related]
18. Microbial corrosion of initial perforation on abandoned pipelines in wet soil containing sulfate-reducing bacteria. Liu H; Cheng YF Colloids Surf B Biointerfaces; 2020 Jun; 190():110899. PubMed ID: 32120127 [TBL] [Abstract][Full Text] [Related]
19. Study on mechanism underlying the acceleration of pitting corrosion of B30 copper-nickel alloy by sulfate-reducing bacteria in seawater. Wang J; Li H; Du M; Sun M; Ma L Sci Total Environ; 2024 Jun; 928():172645. PubMed ID: 38643520 [TBL] [Abstract][Full Text] [Related]
20. Early corrosion behavior of X80 pipeline steel in a simulated soil solution containing Desulfovibrio desulfuricans. Fan Y; Chen C; Zhang Y; Liu H; Liu H; Liu H Bioelectrochemistry; 2021 Oct; 141():107880. PubMed ID: 34229181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]