These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32596623)

  • 1. New Insights into the Fundamental Principle of Semiconductor Photocatalysis.
    Liu B; Wu H; Parkin IP
    ACS Omega; 2020 Jun; 5(24):14847-14856. PubMed ID: 32596623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems.
    Liu B; Zhao X; Terashima C; Fujishima A; Nakata K
    Phys Chem Chem Phys; 2014 May; 16(19):8751-60. PubMed ID: 24675975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions.
    Kisch H
    Acc Chem Res; 2017 Apr; 50(4):1002-1010. PubMed ID: 28378591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hollow Nanoreactors for Controlled Photocatalytic Behaviors: Fundamental Theory, Structure-Performance Relationship, and Catalytic Advantages.
    Liu R; Yu Z; Zhang R; Xiong J; Qiao Y; Liu X; Lu X
    Small; 2024 Mar; 20(12):e2308142. PubMed ID: 37984879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic photocatalysis.
    Zhang X; Chen YL; Liu RS; Tsai DP
    Rep Prog Phys; 2013 Apr; 76(4):046401. PubMed ID: 23455654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring photocatalytic nanostructures for sustainable hydrogen production.
    Cargnello M; Diroll BT
    Nanoscale; 2014 Jan; 6(1):97-105. PubMed ID: 24240274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of Broadband Nanoporous Semiconductor Photonic Crystals for Visible-Light-Driven Photocatalysis.
    Liu L; Lim SY; Law CS; Jin B; Abell AD; Ni G; Santos A
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57079-57092. PubMed ID: 33300792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanometals for Solar-to-Chemical Energy Conversion: From Semiconductor-Based Photocatalysis to Plasmon-Mediated Photocatalysis and Photo-Thermocatalysis.
    Meng X; Liu L; Ouyang S; Xu H; Wang D; Zhao N; Ye J
    Adv Mater; 2016 Aug; 28(32):6781-803. PubMed ID: 27185493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene in Photocatalysis: A Review.
    Li X; Yu J; Wageh S; Al-Ghamdi AA; Xie J
    Small; 2016 Dec; 12(48):6640-6696. PubMed ID: 27805773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis.
    Xiao JD; Jiang HL
    Acc Chem Res; 2019 Feb; 52(2):356-366. PubMed ID: 30571078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic nature of photocatalysis by comparing with electrochemistry.
    Nosaka Y; Nosaka AY
    Phys Chem Chem Phys; 2020 Apr; 22(14):7146-7154. PubMed ID: 32219246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing Nanoengineered Photocatalysts for Hydrogen Generation by Water Splitting and Conversion of Carbon Dioxide to Clean Fuels.
    Bhosale R; Debnath B; Ogale S
    Chem Rec; 2022 Sep; 22(9):e202200110. PubMed ID: 35758532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting the fundamental physical chemistry in heterogeneous photocatalysis: its thermodynamics and kinetics.
    Ohtani B
    Phys Chem Chem Phys; 2014 Feb; 16(5):1788-97. PubMed ID: 24323284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis.
    Wang H; Tian YM; König B
    Nat Rev Chem; 2022 Oct; 6(10):745-755. PubMed ID: 37117495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Vacancies in Photocatalysis: A Review of Recent Progress.
    Ai M; Zhang JW; Wu YW; Pan L; Shi C; Zou JJ
    Chem Asian J; 2020 Nov; 15(22):3599-3619. PubMed ID: 32931134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing ultrasound in photocatalysis: Synthesis and piezo-enhanced effect: A review.
    Li C; Wang X; Wu J; Gao J; Zhao R; Xia S; Yang H; Chen Z; Li L; Wang W
    Ultrason Sonochem; 2023 Oct; 99():106584. PubMed ID: 37678068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hot Electron-Driven Photocatalysis Using Sub-5 nm Gap Plasmonic Nanofinger Arrays.
    Wang Y; Chen B; Meng D; Song B; Liu Z; Hu P; Yang H; Ou TH; Liu F; Pi H; Pi I; Pi I; Wu W
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.