BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 32596743)

  • 21. Enhancing the production of poly-γ-glutamate in
    Song Y; Zhang Y; He M; Liu H; Hu C; Yang L; Yu P
    Prep Biochem Biotechnol; 2020; 50(10):1023-1030. PubMed ID: 32552438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Low Molecular Weight Poly-γ-Glutamic Acid Production in Recombinant Bacillus subtilis 1A751 with Zinc Ion.
    Jiang S; Fan L; Zhao M; Qiu Y; Zhao L
    Appl Biochem Biotechnol; 2019 Oct; 189(2):411-423. PubMed ID: 31037584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. γ-PGA Fermentation by Bacillus subtilis PG-001 with Glucose Feedback Control pH-stat Strategy.
    Wang JQ; Zhao J; Xia JY
    Appl Biochem Biotechnol; 2022 May; 194(5):1871-1880. PubMed ID: 34989966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic and phylogenetic analyses based on nitrogen in a new poly-γ-glutamic acid-producing strain of Bacillus subtilis.
    Ren Y; Huang B; Meng Y; Wei L; Zhang C
    Biotechnol Lett; 2015 Jun; 37(6):1221-6. PubMed ID: 25700815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced poly(γ-glutamic acid) production by H
    Tang B; Zhang D; Li S; Xu Z; Feng X; Xu H
    Biotechnol Appl Biochem; 2016 Sep; 63(5):625-632. PubMed ID: 26202728
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient Production of γ-Polyglutamic Acid by Bacillus subtilis (natto) in Jar Fermenters.
    Ogawa Y; Yamaguchi F; Yuasa K; Tahara Y
    Biosci Biotechnol Biochem; 1997 Jan; 61(10):1684-7. PubMed ID: 27393164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic studies of temperature control strategy on poly(γ-glutamic acid) production in a thermophilic strain Bacillus subtilis GXA-28.
    Zeng W; Chen G; Wang Q; Zheng S; Shu L; Liang Z
    Bioresour Technol; 2014 Mar; 155():104-10. PubMed ID: 24434700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved performance in γ-polyglutamic acid production by Bacillus subtilis LX on industrial scale by impeller retrofitting and its unstructured microbial growth kinetics model.
    Zhu R; Gao X; Xiao Y; Yang N; Jin Y
    Prep Biochem Biotechnol; 2019; 49(3):307-314. PubMed ID: 30767699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production.
    Tian G; Wang Q; Wei X; Ma X; Chen S
    Enzyme Microb Technol; 2017 Apr; 99():9-15. PubMed ID: 28193334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis.
    Kambourova M; Tangney M; Priest FG
    Appl Environ Microbiol; 2001 Feb; 67(2):1004-7. PubMed ID: 11157279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous and selective production of levan and poly(gamma-glutamic acid) by Bacillus subtilis.
    Shih IL; Yu YT
    Biotechnol Lett; 2005 Jan; 27(2):103-6. PubMed ID: 15703872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alkaline serine protease AprE plays an essential role in poly-γ-glutamate production during natto fermentation.
    Kada S; Ishikawa A; Ohshima Y; Yoshida K
    Biosci Biotechnol Biochem; 2013; 77(4):802-9. PubMed ID: 23563567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrofermentation increases concentration of poly γ-glutamic acid in Bacillus subtilis biofilms.
    Adilkhanova A; Ormantayeva A; Kaziullayeva A; Olaifa K; Eghtesadi N; Abbas AH; Calvio C; Pham TT; Ajunwa OM; Marsili E
    Microb Biotechnol; 2024 Mar; 17(3):e14426. PubMed ID: 38497275
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient molasses utilization for low-molecular-weight poly-γ-glutamic acid production using a novel Bacillus subtilis stain.
    Li J; Chen S; Fu J; Xie J; Ju J; Yu B; Wang L
    Microb Cell Fact; 2022 Jul; 21(1):140. PubMed ID: 35842664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis of highly pure poly-γ-glutamic acid for biomedical applications.
    Pereira CL; Antunes JC; Gonçalves RM; Ferreira-da-Silva F; Barbosa MA
    J Mater Sci Mater Med; 2012 Jul; 23(7):1583-91. PubMed ID: 22532096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: A metabolomic analysis.
    Halmschlag B; Putri SP; Fukusaki E; Blank LM
    J Biosci Bioeng; 2020 Sep; 130(3):272-282. PubMed ID: 32546403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of poly-γ-glutamic acid biosynthesis in a moving bed biofilm reactor by Bacillus subtilis NX-2.
    Jiang Y; Tang B; Xu Z; Liu K; Xu Z; Feng X; Xu H
    Bioresour Technol; 2016 Oct; 218():360-6. PubMed ID: 27376835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromosomal integration of a synthetic expression control sequence achieves poly-gamma-glutamate production in a Bacillus subtilis strain.
    Yeh CM; Wang JP; Lo SC; Chan WC; Lin MY
    Biotechnol Prog; 2010; 26(4):1001-7. PubMed ID: 20564357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement of poly(gamma-glutamic acid) biosynthesis and redistribution of metabolic flux with the presence of different additives in Bacillus subtilis CGMCC 0833.
    Wu Q; Xu H; Shi N; Yao J; Li S; Ouyang P
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):527-35. PubMed ID: 18443783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functions of poly-gamma-glutamic acid (γ-PGA) degradation genes in γ-PGA synthesis and cell morphology maintenance.
    Feng J; Gao W; Gu Y; Zhang W; Cao M; Song C; Zhang P; Sun M; Yang C; Wang S
    Appl Microbiol Biotechnol; 2014; 98(14):6397-407. PubMed ID: 24769902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.