These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 32596981)
21. Programming ORR Activity of Ni/NiO Bhalothia D; Chou JP; Yan C; Hu A; Yang YT; Chen TY ACS Omega; 2018 Aug; 3(8):8733-8744. PubMed ID: 31459005 [TBL] [Abstract][Full Text] [Related]
22. Selective dealloying of chemically disordered Pt-Ni bimetallic nanoparticles for the oxygen reduction reaction. Jeon TY; Lee HK; Yoon GH; Lee SH; Yun HJ; Kim KJ; Lee KS; Pinna N; Yu SH Nanoscale; 2023 Jan; 15(3):1136-1144. PubMed ID: 35880665 [TBL] [Abstract][Full Text] [Related]
23. Key Factors for Simultaneous Improvements of Performance and Durability of Core-Shell Pt Zhao X; Takao S; Kaneko T; Iwasawa Y Chem Rec; 2019 Jul; 19(7):1337-1353. PubMed ID: 30338915 [TBL] [Abstract][Full Text] [Related]
24. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability. Jackson A; Strickler A; Higgins D; Jaramillo TF Nanomaterials (Basel); 2018 Jan; 8(1):. PubMed ID: 29329264 [TBL] [Abstract][Full Text] [Related]
25. Platinum-monolayer shell on AuNi(0.5)Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. Gong K; Su D; Adzic RR J Am Chem Soc; 2010 Oct; 132(41):14364-6. PubMed ID: 20873798 [TBL] [Abstract][Full Text] [Related]
26. Fe Stabilization by Intermetallic L1 Li J; Xi Z; Pan YT; Spendelow JS; Duchesne PN; Su D; Li Q; Yu C; Yin Z; Shen B; Kim YS; Zhang P; Sun S J Am Chem Soc; 2018 Feb; 140(8):2926-2932. PubMed ID: 29411604 [TBL] [Abstract][Full Text] [Related]
27. Oxygen reduction electrocatalyst of Pt on Au nanoparticles through spontaneous deposition. Dai Y; Chen S ACS Appl Mater Interfaces; 2015 Jan; 7(1):823-9. PubMed ID: 25513894 [TBL] [Abstract][Full Text] [Related]
28. Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts. Feng Y; Shao Q; Ji Y; Cui X; Li Y; Zhu X; Huang X Sci Adv; 2018 Jul; 4(7):eaap8817. PubMed ID: 30027113 [TBL] [Abstract][Full Text] [Related]
29. Sandwiched Graphene Interdiffusion Barrier for Preserving Au@Pt Atomically Thin Core@Shell Structure and the Resulting Oxygen Reduction Reaction Catalytic Activity. Vitale A; Murad H; Abdelhafiz A; Buntin P; Alamgir FM ACS Appl Mater Interfaces; 2019 Jan; 11(1):1026-1032. PubMed ID: 30511825 [TBL] [Abstract][Full Text] [Related]
30. Topotactic Transformations in an Icosahedral Nanocrystal to Form Efficient Water-Splitting Catalysts. Oh A; Kim HY; Baik H; Kim B; Chaudhari NK; Joo SH; Lee K Adv Mater; 2019 Jan; 31(1):e1805546. PubMed ID: 30362625 [TBL] [Abstract][Full Text] [Related]
31. Effects of Catalyst Processing on the Activity and Stability of Pt-Ni Nanoframe Electrocatalysts. Chen S; Niu Z; Xie C; Gao M; Lai M; Li M; Yang P ACS Nano; 2018 Aug; 12(8):8697-8705. PubMed ID: 30028589 [TBL] [Abstract][Full Text] [Related]
32. Atomic-Level Construction of Tensile-Strained PdFe Alloy Surface toward Highly Efficient Oxygen Reduction Electrocatalysis. Li X; Li X; Liu C; Huang H; Gao P; Ahmad F; Luo L; Ye Y; Geng Z; Wang G; Si R; Ma C; Yang J; Zeng J Nano Lett; 2020 Feb; 20(2):1403-1409. PubMed ID: 31967840 [TBL] [Abstract][Full Text] [Related]
33. Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Gan L; Heggen M; O'Malley R; Theobald B; Strasser P Nano Lett; 2013 Mar; 13(3):1131-8. PubMed ID: 23360425 [TBL] [Abstract][Full Text] [Related]
34. Highly Active and Stable Pt-Pd Alloy Catalysts Synthesized by Room-Temperature Electron Reduction for Oxygen Reduction Reaction. Wang W; Wang Z; Wang J; Zhong CJ; Liu CJ Adv Sci (Weinh); 2017 Apr; 4(4):1600486. PubMed ID: 28435780 [TBL] [Abstract][Full Text] [Related]
35. Facile Synthesis of Quaternary Structurally Ordered L1 Wang S; Luo Q; Zhu Y; Tang S; Du Y ACS Omega; 2019 Oct; 4(18):17894-17902. PubMed ID: 31681899 [TBL] [Abstract][Full Text] [Related]
36. Catalysis Sans Catalyst Loss: The Origins of Prolonged Stability of Graphene-Metal-Graphene Sandwich Architecture for Oxygen Reduction Reactions. Abdelhafiz A; Choi JI; Zhao B; Cho J; Ding Y; Soule L; Jang SS; Liu M; Alamgir FM Adv Sci (Weinh); 2023 Dec; 10(34):e2304616. PubMed ID: 37863808 [TBL] [Abstract][Full Text] [Related]
37. Hollow PtFe Alloy Nanoparticles Derived from Pt-Fe Yang Z; Shang L; Xiong X; Shi R; Waterhouse GIN; Zhang T Chemistry; 2020 Mar; 26(18):4090-4096. PubMed ID: 31782577 [TBL] [Abstract][Full Text] [Related]
38. Low Pt-Content Ternary PtNiCu Nanoparticles with Hollow Interiors and Accessible Surfaces as Enhanced Multifunctional Electrocatalysts. Wu D; Zhang W; Lin A; Cheng D ACS Appl Mater Interfaces; 2020 Feb; 12(8):9600-9608. PubMed ID: 32027803 [TBL] [Abstract][Full Text] [Related]
39. Size-Controlled Synthesis of Sub-10 nm PtNi3 Alloy Nanoparticles and their Unusual Volcano-Shaped Size Effect on ORR Electrocatalysis. Gan L; Rudi S; Cui C; Heggen M; Strasser P Small; 2016 Jun; 12(23):3189-96. PubMed ID: 27152487 [TBL] [Abstract][Full Text] [Related]
40. Scalable Nanoporous (Pt Han GF; Gu L; Lang XY; Xiao BB; Yang ZZ; Wen Z; Jiang Q ACS Appl Mater Interfaces; 2016 Dec; 8(48):32910-32917. PubMed ID: 27934169 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]