BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32597063)

  • 1. [Synthesis of pyrroloquinoline quinone by recombinant Gluconobacter oxydans].
    Ye R; Li F; Ding F; Zhao Z; Chen S; Yuan J
    Sheng Wu Gong Cheng Xue Bao; 2020 Jun; 36(6):1138-1149. PubMed ID: 32597063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster.
    Yang XP; Zhong GF; Lin JP; Mao DB; Wei DZ
    J Ind Microbiol Biotechnol; 2010 Jun; 37(6):575-80. PubMed ID: 20213113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinational expression of D-sorbitol dehydrogenase and pyrroloquinoline quinone increases 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose production by Gluconobacter oxydans through cofactor manipulation.
    Liu D; Ke X; Hu ZC; Zheng YG
    Enzyme Microb Technol; 2020 Nov; 141():109670. PubMed ID: 33051020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H.
    Hölscher T; Görisch H
    J Bacteriol; 2006 Nov; 188(21):7668-76. PubMed ID: 16936032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation.
    Yuan J; Wu M; Lin J; Yang L
    BMC Biotechnol; 2016 May; 16(1):42. PubMed ID: 27189063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of a Gluconobacter oxydans knockout collection for improved extraction of rare earth elements.
    Schmitz AM; Pian B; Medin S; Reid MC; Wu M; Gazel E; Barstow B
    Nat Commun; 2021 Nov; 12(1):6693. PubMed ID: 34795278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Isolation PQQ biosynthesis gene cluster from Gluconobacter oxydans based on sorbose-dehydrogenase activity].
    Gao S; Xiong X; Wang J; Zhang W
    Wei Sheng Wu Xue Bao; 2010 Aug; 50(8):1104-8. PubMed ID: 20931881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of high 2-KLG concentration on expression of pivotal genes involved in 2-KLG synthesis in Gluconobacter oxydans WSH-003].
    Wan H; Kang Z; Li J; Zhou J
    Wei Sheng Wu Xue Bao; 2016 Oct; 56(10):1656-63. PubMed ID: 29741828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic improvement of PQQ-dependent D-sorbitol dehydrogenase activity from Gluconobacter oxydans for the biosynthesis of miglitol precursor 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose.
    Ke X; Pan-Hong Y; Hu ZC; Chen L; Sun XQ; Zheng YG
    J Biotechnol; 2019 Jul; 300():55-62. PubMed ID: 31100333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pyrroloquinoline quinone synthesis genes of Gluconobacter oxydans.
    Felder M; Gupta A; Verma V; Kumar A; Qazi GN; Cullum J
    FEMS Microbiol Lett; 2000 Dec; 193(2):231-6. PubMed ID: 11111029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of pyrroloquinoline quinone-dependent d-sorbitol dehydrogenase activity from Gluconobacter oxydans via expression of Vitreoscilla hemoglobin and regulation of dissolved oxygen tension for the biosynthesis of 6-(N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose.
    Liu D; Ke X; Hu ZC; Zheng YG
    J Biosci Bioeng; 2021 May; 131(5):518-524. PubMed ID: 33487552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans.
    Hölscher T; Schleyer U; Merfort M; Bringer-Meyer S; Görisch H; Sahm H
    J Mol Microbiol Biotechnol; 2009; 16(1-2):6-13. PubMed ID: 18957858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioconversion of recombinantly produced precursor peptide pqqA into pyrroloquinoline quinone (PQQ) using a cell-free in vitro system.
    Wang G; Zhou Y; Ma K; Zhang F; Ye J; Zhong G; Yang X
    Protein Expr Purif; 2021 Feb; 178():105777. PubMed ID: 33069826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrroloquinoline quinone from Gluconobacter oxydans fermentation broth enhances superoxide anion-scavenging capacity of Cu/Zn-SOD.
    Ma K; Cui JZ; Ye JB; Hu XM; Ma GL; Yang XP
    Food Chem; 2017 Sep; 230():291-294. PubMed ID: 28407913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy.
    Yuan J; Wu M; Lin J; Yang L
    J Biosci Bioeng; 2016 Jul; 122(1):10-6. PubMed ID: 26896860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid.
    Elfari M; Ha SW; Bremus C; Merfort M; Khodaverdi V; Herrmann U; Sahm H; Görisch H
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):668-74. PubMed ID: 15735967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Gluconobacter oxydans 621H for increased biomass yield.
    Kiefler I; Bringer S; Bott M
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5453-5467. PubMed ID: 28484812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-L-gulonic acid from D-sorbitol.
    Gao L; Hu Y; Liu J; Du G; Zhou J; Chen J
    Metab Eng; 2014 Jul; 24():30-7. PubMed ID: 24792618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans.
    Meyer M; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3457-66. PubMed ID: 22790543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.