These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 32597064)
21. Nutrient removal efficiency of green algal strains at high phosphate concentrations. Moreno Osorio JH; Del Mondo A; Pinto G; Pollio A; Frunzo L; Lens PNL; Esposito G Water Sci Technol; 2019 Nov; 80(10):1832-1843. PubMed ID: 32144215 [TBL] [Abstract][Full Text] [Related]
22. Phosphorus-supplemented seawater-wastewater cyclic system for microalgal cultivation: Production of high-lipid and high-protein algae. Ma M; Jiang L; Xie Z; Liu M; Chen H; Yu Z; Pei H Bioresour Technol; 2024 Apr; 398():130512. PubMed ID: 38437960 [TBL] [Abstract][Full Text] [Related]
23. Effects of metal ions on the cultivation of an oleaginous microalga Chlorella sp. Liu Y; Zhan JJ; Hong Y Environ Sci Pollut Res Int; 2017 Dec; 24(34):26594-26604. PubMed ID: 28956234 [TBL] [Abstract][Full Text] [Related]
24. Nitrogen and phosphate removal from dairy processing side-streams by monocultures or consortium of microalgae. Kiani H; Azimi Y; Li Y; Mousavi M; Cara F; Mulcahy S; McDonnell H; Blanco A; Halim R J Biotechnol; 2023 Jan; 361():1-11. PubMed ID: 36410532 [TBL] [Abstract][Full Text] [Related]
25. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater. Gao F; Peng YY; Li C; Yang GJ; Deng YB; Xue B; Guo YM Sci Total Environ; 2018 Nov; 640-641():943-953. PubMed ID: 30021327 [TBL] [Abstract][Full Text] [Related]
26. Multiscale modelling of mixotrophic algal growth in pilot-scale photobioreactors and its application to microalgal cultivation using wastewater. Mehta AK; Chakraborty S Environ Res; 2022 Nov; 214(Pt 3):113952. PubMed ID: 35934141 [TBL] [Abstract][Full Text] [Related]
27. Semi-batch cultivation of Chlorella sorokiniana AK-1 with dual carriers for the effective treatment of full strength piggery wastewater treatment. Chen CY; Kuo EW; Nagarajan D; Dong CD; Lee DJ; Varjani S; Lam SS; Chang JS Bioresour Technol; 2021 Apr; 326():124773. PubMed ID: 33548816 [TBL] [Abstract][Full Text] [Related]
28. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Chen CY; Kuo EW; Nagarajan D; Ho SH; Dong CD; Lee DJ; Chang JS Bioresour Technol; 2020 Apr; 302():122814. PubMed ID: 32004812 [TBL] [Abstract][Full Text] [Related]
29. Oilfield-produced water as a medium for the growth of Chlorella pyrenoidosa outdoor in an arid region. Rahmani A; Zerrouki D; Tabchouche A; Djafer L Environ Sci Pollut Res Int; 2022 Dec; 29(58):87509-87518. PubMed ID: 35809171 [TBL] [Abstract][Full Text] [Related]
30. Optimal strategies for bioremediation of nitrate-contaminated groundwater and microalgae biomass production. Rezvani F; Sarrafzadeh MH; Seo SH; Oh HM Environ Sci Pollut Res Int; 2018 Sep; 25(27):27471-27482. PubMed ID: 30043348 [TBL] [Abstract][Full Text] [Related]
31. A whole process study of dual microalgae cultivation coupled to domestic wastewater treatment and wheat growth. Wang X; Wang Q; Hong Y; Wang Z Environ Res; 2024 Aug; 254():119168. PubMed ID: 38762007 [TBL] [Abstract][Full Text] [Related]
32. Cattle wastewater as a low-cost supplement augmenting microalgal biomass under batch and fed-batch conditions. Jain R; Mishra S; Mohanty K J Environ Manage; 2022 Feb; 304():114213. PubMed ID: 34896802 [TBL] [Abstract][Full Text] [Related]
33. Effects of multi-temperature regimes on cultivation of microalgae in municipal wastewater to simultaneously remove nutrients and produce biomass. Xu K; Zou X; Wen H; Xue Y; Qu Y; Li Y Appl Microbiol Biotechnol; 2019 Oct; 103(19):8255-8265. PubMed ID: 31396677 [TBL] [Abstract][Full Text] [Related]
34. Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency. Shen QH; Gong YP; Fang WZ; Bi ZC; Cheng LH; Xu XH; Chen HL Bioresour Technol; 2015 Oct; 193():68-75. PubMed ID: 26117237 [TBL] [Abstract][Full Text] [Related]
35. Enhancement of microalgal biomass productivity through mixotrophic culture process utilizing waste soy sauce and industrial flue gas. Lee SY; Lee JS; Sim SJ Bioresour Technol; 2023 Apr; 373():128719. PubMed ID: 36773814 [TBL] [Abstract][Full Text] [Related]
36. Tofu whey wastewater is a promising basal medium for microalgae culture. Wang SK; Wang X; Miao J; Tian YT Bioresour Technol; 2018 Apr; 253():79-84. PubMed ID: 29331517 [TBL] [Abstract][Full Text] [Related]
37. Cultivation of two Chlorella species in Open sewage contaminated channel wastewater for biomass and biochemical profiles: Comparative lab-scale approach. Azam R; Kothari R; Singh HM; Ahmad S; Sari A; Tyagi VV J Biotechnol; 2022 Jan; 344():24-31. PubMed ID: 34838946 [TBL] [Abstract][Full Text] [Related]
38. Insight into the mechanism of nitrogen sufficiency conversion strategy for microalgae-based ammonium-rich wastewater treatment. Song H; Li J; Su Q; Li H; Guo X; Shao S; Fan L; Xu P; Zhou W; Qian J Chemosphere; 2024 Feb; 349():140904. PubMed ID: 38070604 [TBL] [Abstract][Full Text] [Related]
39. Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds. Gutiérrez R; Ferrer I; González-Molina A; Salvadó H; García J; Uggetti E Water Res; 2016 Dec; 106():539-549. PubMed ID: 27771604 [TBL] [Abstract][Full Text] [Related]
40. Nutrient removal from pickle industry wastewater by cultivation of Chlorella pyrenoidosa for lipid production. Wan L; Wu Y; Zhang X; Zhang W Water Sci Technol; 2019 Jun; 79(11):2166-2174. PubMed ID: 31318354 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]