BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32597180)

  • 1. Self-Assembly of Model Amphiphilic Peptides in Nonaqueous Solvents: Changing the Driving Force for Aggregation Does Not Change the Fibril Structure.
    Del Giudice A; Rüter A; Pavel NV; Galantini L; Olsson U
    Langmuir; 2020 Jul; 36(29):8451-8460. PubMed ID: 32597180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Twisted Ribbon Aggregates in a Model Peptide System.
    Rüter A; Kuczera S; Pochan DJ; Olsson U
    Langmuir; 2019 Apr; 35(17):5802-5808. PubMed ID: 30955339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tube to ribbon transition in a self-assembling model peptide system.
    Rüter A; Kuczera S; Stenhammar J; Zinn T; Narayanan T; Olsson U
    Phys Chem Chem Phys; 2020 Sep; 22(33):18320-18327. PubMed ID: 32785353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers.
    Aggeli A; Nyrkova IA; Bell M; Harding R; Carrick L; McLeish TC; Semenov AN; Boden N
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):11857-62. PubMed ID: 11592996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous self-assembly within the homologous peptide series AnK.
    Çenker CÇ; Bucak S; Olsson U
    Langmuir; 2014 Aug; 30(33):10072-9. PubMed ID: 25072740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-Dependent Self-Assembly and Structural Diversity of Islet Amyloid Polypeptide-Derived β-Sheet Fibrils.
    Wang ST; Lin Y; Spencer RK; Thomas MR; Nguyen AI; Amdursky N; Pashuck ET; Skaalure SC; Song CY; Parmar PA; Morgan RM; Ercius P; Aloni S; Zuckermann RN; Stevens MM
    ACS Nano; 2017 Sep; 11(9):8579-8589. PubMed ID: 28771324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of a peptide with a tandem repeat of the Aβ16-22 sequence linked by a β turn-promoting dipeptide sequence.
    Sivakama Sundari C; Bikshapathy E; Nagaraj R
    Biopolymers; 2015 Nov; 104(6):790-803. PubMed ID: 26473431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent Controlled Structural Transition of KI4K Self-Assemblies: from Nanotubes to Nanofibrils.
    Zhao Y; Deng L; Wang J; Xu H; Lu JR
    Langmuir; 2015 Dec; 31(47):12975-83. PubMed ID: 26540520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the Conformational Preference to β-Strand during Peptide Self-Assembly.
    Ganesan V; Priya MH
    J Phys Chem B; 2023 Jul; 127(26):5821-5836. PubMed ID: 37364023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher-order molecular packing in amyloid-like fibrils constructed with linear arrangements of hydrophobic and hydrogen-bonding side-chains.
    Saiki M; Honda S; Kawasaki K; Zhou D; Kaito A; Konakahara T; Morii H
    J Mol Biol; 2005 May; 348(4):983-98. PubMed ID: 15843028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Side Chains in β-Sheet Self-Assembly into Peptide Fibrils. IR and VCD Spectroscopic Studies of Glutamic Acid-Containing Peptides.
    Tobias F; Keiderling TA
    Langmuir; 2016 May; 32(18):4653-61. PubMed ID: 27099990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators.
    Rajagopal K; Ozbas B; Pochan DJ; Schneider JP
    Eur Biophys J; 2006 Jan; 35(2):162-9. PubMed ID: 16283291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting amyloid fibril lamination for nanotube self-assembly.
    Lu K; Jacob J; Thiyagarajan P; Conticello VP; Lynn DG
    J Am Chem Soc; 2003 May; 125(21):6391-3. PubMed ID: 12785778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition between crystal and fibril formation in molecular mutations of amyloidogenic peptides.
    Reynolds NP; Adamcik J; Berryman JT; Handschin S; Zanjani AAH; Li W; Liu K; Zhang A; Mezzenga R
    Nat Commun; 2017 Nov; 8(1):1338. PubMed ID: 29109399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Electrostatics in the Fibril Stability of a Model Ionic-Complementary Peptide.
    Owczarz M; Casalini T; Motta AC; Morbidelli M; Arosio P
    Biomacromolecules; 2015 Dec; 16(12):3792-801. PubMed ID: 26594824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloid from a histochemical perspective. A review of the structure, properties and types of amyloid, and a proposed staining mechanism for Congo red staining.
    Dapson RW
    Biotech Histochem; 2018; 93(8):543-556. PubMed ID: 30403893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sol-gel transition of charged fibrils composed of a model amphiphilic peptide.
    Owczarz M; Bolisetty S; Mezzenga R; Arosio P
    J Colloid Interface Sci; 2015 Jan; 437():244-251. PubMed ID: 25441357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.