These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32597220)

  • 1. Development of a High-Fidelity Robot-Assisted Kidney Transplant Simulation Platform Using Three-Dimensional Printing and Hydrogel Casting Technologies.
    Saba P; Belfast E; Melnyk R; Patel A; Kashyap R; Ghazi A
    J Endourol; 2020 Oct; 34(10):1088-1094. PubMed ID: 32597220
    [No Abstract]   [Full Text] [Related]  

  • 2. The First Entirely 3D-Printed Training Model for Robot-assisted Kidney Transplantation: The RAKT Box.
    Campi R; Pecoraro A; Vignolini G; Spatafora P; Sebastianelli A; Sessa F; Li Marzi V; Territo A; Decaestecker K; Breda A; Serni S; ;
    Eur Urol Open Sci; 2023 Jul; 53():98-105. PubMed ID: 37304228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel 3D-printed hybrid simulation model for robotic-assisted kidney transplantation (RAKT).
    Uwechue R; Gogalniceanu P; Kessaris N; Byrne N; Chandak P; Olsburgh J; Ahmed K; Mamode N; Loukopoulos I
    J Robot Surg; 2018 Sep; 12(3):541-544. PubMed ID: 29374811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical and functional validation of a perfused, robot-assisted partial nephrectomy simulation platform using a combination of 3D printing and hydrogel casting.
    Melnyk R; Ezzat B; Belfast E; Saba P; Farooq S; Campbell T; McAleavey S; Buckley M; Ghazi A
    World J Urol; 2020 Jul; 38(7):1631-1641. PubMed ID: 31679063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation and validation of clinically relevant performance metrics of simulation (CRPMS) into a novel full-immersion simulation platform for nerve-sparing robot-assisted radical prostatectomy (NS-RARP) utilizing three-dimensional printing and hydrogel casting technology.
    Witthaus MW; Farooq S; Melnyk R; Campbell T; Saba P; Mathews E; Ezzat B; Ertefaie A; Frye TP; Wu G; Rashid H; Joseph JV; Ghazi A
    BJU Int; 2020 Feb; 125(2):322-332. PubMed ID: 31677325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-institutional validation of a perfused robot-assisted partial nephrectomy procedural simulation platform utilizing clinically relevant objective metrics of simulators (CROMS).
    Ghazi A; Melnyk R; Hung AJ; Collins J; Ertefaie A; Saba P; Gurung P; Frye T; Rashid H; Wu G; Mottrie A; Costello T; Dasgupta P; Joseph J
    BJU Int; 2021 Jun; 127(6):645-653. PubMed ID: 32936977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic kidney autotransplantation in a porcine model: a procedure-specific training platform for the simulation of robotic intracorporeal vascular anastomosis.
    Tiong HY; Goh BYS; Chiong E; Tan LGL; Vathsala A
    J Robot Surg; 2018 Dec; 12(4):693-698. PubMed ID: 29605864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilizing 3D Printing and Hydrogel Casting for the Development of Patient-Specific Rehearsal Platforms for Robotic Assisted Partial Nephrectomies.
    Ghazi A; Saba P; Melnyk R; Joseph J
    Urology; 2021 Jan; 147():317. PubMed ID: 33129872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot-assisted Kidney Transplantation: The European Experience.
    Breda A; Territo A; Gausa L; Tuğcu V; Alcaraz A; Musquera M; Decaestecker K; Desender L; Stockle M; Janssen M; Fornara P; Mohammed N; Siena G; Serni S; Guirado L; Facundo C; Doumerc N
    Eur Urol; 2018 Feb; 73(2):273-281. PubMed ID: 28916408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full Robot-Assisted Living Donor Nephrectomy and Kidney Transplantation in a Twin Dedicated Operating Room: Initial Experience From a High-Volume Robotic Center.
    Siena G; Vignolini G; Mari A; Li Marzi V; Caroassai S; Giancane S; Sessa F; Minervini A; Breda A; Serni S
    Surg Innov; 2019 Aug; 26(4):449-455. PubMed ID: 31018770
    [No Abstract]   [Full Text] [Related]  

  • 11. Robot-assisted Kidney Transplantation with Regional Hypothermia Using Grafts with Multiple Vessels After Extracorporeal Vascular Reconstruction: Results from the European Association of Urology Robotic Urology Section Working Group.
    Siena G; Campi R; Decaestecker K; Tuğcu V; Sahin S; Alcaraz A; Musquera M; Territo A; Gausa L; Randon C; Stockle M; Janssen M; Fornara P; Mohammed N; Guirado L; Facundo C; Doumerc N; Vignolini G; Breda A; Serni S
    Eur Urol Focus; 2018 Mar; 4(2):175-184. PubMed ID: 30049659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Living-donor robotic-assisted kidney transplantation: French academic center experience].
    Prudhomme T; Lesourd M; Roumiguié M; Gamé X; Soulié M; Del Bello A; Kamar N; Sallusto F; Doumerc N
    Prog Urol; 2021; 31(8-9):539-554. PubMed ID: 33612444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Validation of a Low-Cost, High-Fidelity Model for Urethrovesical Anastomosis in Radical Prostatectomy.
    Johnson BA; Timberlake M; Steinberg RL; Kosemund M; Mueller B; Gahan JC
    J Endourol; 2019 Apr; 33(4):331-336. PubMed ID: 30734578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot-assisted kidney transplantation: State of art.
    Territo A; Diana P; Gaya JM; Gallioli A; Piana A; Breda A
    Arch Esp Urol; 2021 Dec; 74(10):970-978. PubMed ID: 34851312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional Augmented Reality-guided Robotic-assisted Kidney Transplantation: Breaking the Limit of Atheromatic Plaques.
    Piana A; Gallioli A; Amparore D; Diana P; Territo A; Campi R; Gaya JM; Guirado L; Checcucci E; Bellin A; Palou J; Serni S; Porpiglia F; Breda A
    Eur Urol; 2022 Oct; 82(4):419-426. PubMed ID: 35985902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a Full-Immersion Simulation Platform for Percutaneous Nephrolithotomy Using Three-Dimensional Printing Technology.
    Ghazi A; Campbell T; Melnyk R; Feng C; Andrusco A; Stone J; Erturk E
    J Endourol; 2017 Dec; 31(12):1314-1320. PubMed ID: 29048214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-setting robot-assisted kidney transplantation consecutive to single-port laparoscopic nephrectomy in a child and robot-assisted living-related donor nephrectomy: initial Ghent experience.
    Spinoit AF; Moreels N; Raes A; Prytula A; De Groote R; Ploumidis A; De Bleser E; Randon C; Vanpeteghem C; Walle JV; Van Laecke E; Vermassen F; Decaestecker K
    J Pediatr Urol; 2019 Oct; 15(5):578-579. PubMed ID: 31519482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning Curve in Robot-assisted Kidney Transplantation: Results from the European Robotic Urological Society Working Group.
    Gallioli A; Territo A; Boissier R; Campi R; Vignolini G; Musquera M; Alcaraz A; Decaestecker K; Tugcu V; Vanacore D; Serni S; Breda A
    Eur Urol; 2020 Aug; 78(2):239-247. PubMed ID: 31928760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ERUS course on robot-assisted kidney transplantation.
    Campi R; Pecoraro A; Piramide F; Gallo ML; Serni S; Mottrie A; Territo A; Decaestecker K; Breda A;
    World J Urol; 2024 Mar; 42(1):205. PubMed ID: 38554210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a robot-assisted kidney transplantation programme from deceased donors in a referral academic centre: technical nuances and preliminary results.
    Vignolini G; Campi R; Sessa F; Greco I; Larti A; Giancane S; Sebastianelli A; Gacci M; Peris A; Li Marzi V; Breda A; Siena G; Serni S
    BJU Int; 2019 Mar; 123(3):474-484. PubMed ID: 30311992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.