BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32597303)

  • 1. Targeted RNA sequencing enhances gene expression profiling of ultra-low input samples.
    Curion F; Handel AE; Attar M; Gallone G; Bowden R; Cader MZ; Clark MB
    RNA Biol; 2020 Dec; 17(12):1741-1753. PubMed ID: 32597303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcript Profiling Using Long-Read Sequencing Technologies.
    Bayega A; Wang YC; Oikonomopoulos S; Djambazian H; Fahiminiya S; Ragoussis J
    Methods Mol Biol; 2018; 1783():121-147. PubMed ID: 29767360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved definition of the mouse transcriptome via targeted RNA sequencing.
    Bussotti G; Leonardi T; Clark MB; Mercer TR; Crawford J; Malquori L; Notredame C; Dinger ME; Mattick JS; Enright AJ
    Genome Res; 2016 May; 26(5):705-16. PubMed ID: 27197243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis.
    Li W; Turner A; Aggarwal P; Matter A; Storvick E; Arnett DK; Broeckel U
    BMC Genomics; 2015 Dec; 16():1069. PubMed ID: 26673413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanopore Whole Transcriptome Analysis and Pathogen Surveillance by a Novel Solid-Phase Catalysis Approach.
    Fang Y; Changavi A; Yang M; Sun L; Zhang A; Sun D; Sun Z; Zhang B; Xu MQ
    Adv Sci (Weinh); 2022 Jan; 9(3):e2103373. PubMed ID: 34837482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using RNentropy to Detect Significant Variation in Gene Expression Across Multiple RNA-Seq or Single-Cell RNA-Seq Samples.
    Zambelli F; Pavesi G
    Methods Mol Biol; 2021; 2284():77-96. PubMed ID: 33835439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted sequencing for gene discovery and quantification using RNA CaptureSeq.
    Mercer TR; Clark MB; Crawford J; Brunck ME; Gerhardt DJ; Taft RJ; Nielsen LK; Dinger ME; Mattick JS
    Nat Protoc; 2014 May; 9(5):989-1009. PubMed ID: 24705597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full-length isoform concatenation sequencing to resolve cancer transcriptome complexity.
    Wijeratne S; Gonzalez MEH; Roach K; Miller KE; Schieffer KM; Fitch JR; Leonard J; White P; Kelly BJ; Cottrell CE; Mardis ER; Wilson RK; Miller AR
    BMC Genomics; 2024 Jan; 25(1):122. PubMed ID: 38287261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling of bacterial transcriptome from ultra-low input with MiniBac-seq.
    Wang T; Shen P; Chai R; He Y; Liu J
    Environ Microbiol; 2022 Dec; 24(12):5774-5787. PubMed ID: 36053758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-Seq.
    Miller JA; Menon V; Goldy J; Kaykas A; Lee CK; Smith KA; Shen EH; Phillips JW; Lein ES; Hawrylycz MJ
    BMC Genomics; 2014 Feb; 15(1):154. PubMed ID: 24564186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complexities of mammalian transcriptome revealed by targeted RNA enrichment techniques.
    Xu D; Tang L; Kapranov P
    Trends Genet; 2023 Apr; 39(4):320-333. PubMed ID: 36681580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted LncRNA Sequencing with the SeqCap RNA Enrichment System.
    Tan JC; Bouriakov VD; Feng L; Richmond TA; Burgess D
    Methods Mol Biol; 2016; 1402():73-100. PubMed ID: 26721485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA Sequencing and Analysis.
    Kukurba KR; Montgomery SB
    Cold Spring Harb Protoc; 2015 Apr; 2015(11):951-69. PubMed ID: 25870306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single sample sequencing (S3EQ) of epigenome and transcriptome in nucleus accumbens.
    Xu SJ; Heller EA
    J Neurosci Methods; 2018 Oct; 308():62-73. PubMed ID: 30031009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted single-cell RNA sequencing of transcription factors enhances the identification of cell types and trajectories.
    Pokhilko A; Handel AE; Curion F; Volpato V; Whiteley ES; Bøstrand S; Newey SE; Akerman CJ; Webber C; Clark MB; Bowden R; Cader MZ
    Genome Res; 2021 Jun; 31(6):1069-1081. PubMed ID: 34011578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes.
    Brooks MJ; Rajasimha HK; Roger JE; Swaroop A
    Mol Vis; 2011; 17():3034-54. PubMed ID: 22162623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data.
    Zhu M; Dahmen JL; Stacey G; Cheng J
    BMC Bioinformatics; 2013 Sep; 14():278. PubMed ID: 24053776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seq-ing improved gene expression estimates from microarrays using machine learning.
    Korir PK; Geeleher P; Seoighe C
    BMC Bioinformatics; 2015 Sep; 16():286. PubMed ID: 26338512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA CoMPASS: a dual approach for pathogen and host transcriptome analysis of RNA-seq datasets.
    Xu G; Strong MJ; Lacey MR; Baribault C; Flemington EK; Taylor CM
    PLoS One; 2014; 9(2):e89445. PubMed ID: 24586784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.