These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32597448)

  • 1. Fast and accurate calculation of hydration energies of molecules and ions.
    Voityuk AA; Vyboishchikov SF
    Phys Chem Chem Phys; 2020 Jul; 22(26):14591-14598. PubMed ID: 32597448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple COSMO-based method for calculation of hydration energies of neutral molecules.
    Voityuk AA; Vyboishchikov SF
    Phys Chem Chem Phys; 2019 Aug; 21(34):18706-18713. PubMed ID: 31424068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of CM5 Charges for Condensed-Phase Modeling.
    Vilseck JZ; Tirado-Rives J; Jorgensen WL
    J Chem Theory Comput; 2014 Jul; 10(7):2802-2812. PubMed ID: 25061445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast non-iterative calculation of solvation energies for water and non-aqueous solvents.
    Vyboishchikov SF; Voityuk AA
    J Comput Chem; 2021 Jun; 42(17):1184-1194. PubMed ID: 33844315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations.
    Riccardi D; Guo HB; Parks JM; Gu B; Liang L; Smith JC
    J Chem Theory Comput; 2013 Jan; 9(1):555-69. PubMed ID: 26589054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of free energies of hydration using CM1 and CM3 atomic charges.
    Udier-Blagović M; Morales De Tirado P; Pearlman SA; Jorgensen WL
    J Comput Chem; 2004 Aug; 25(11):1322-32. PubMed ID: 15185325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton.
    Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dense Neural Network for Calculating Solvation Free Energies from Electronegativity-Equalization Atomic Charges.
    Vyboishchikov SF
    J Chem Inf Model; 2023 Oct; 63(20):6283-6292. PubMed ID: 37774139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of CM5 Charges for Nonaqueous Condensed-Phase Modeling.
    Dodda LS; Vilseck JZ; Cutrona KJ; Jorgensen WL
    J Chem Theory Comput; 2015 Sep; 11(9):4273-82. PubMed ID: 26575922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarizable Simulations with Second order Interaction Model - force field and software for fast polarizable calculations: Parameters for small model systems and free energy calculations.
    Kaminski GA; Ponomarev SY; Liu AB
    J Chem Theory Comput; 2009 Oct; 5(11):2935-2943. PubMed ID: 20209038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ESCAPE: A novel approach for a fast estimation of dynamic correlation energies: Application to large organic molecules.
    Warczinski L; Franke R; Staemmler V
    J Comput Chem; 2019 Oct; 40(28):2491-2501. PubMed ID: 31343760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration Free Energies of Multifunctional Nitroaromatic Compounds.
    Ahmed A; Sandler SI
    J Chem Theory Comput; 2013 Jun; 9(6):2774-85. PubMed ID: 26583868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of the solvation free energy of neutral and ionic molecules in diverse solvents.
    Lee S; Cho KH; Lee CJ; Kim GE; Na CH; In Y; No KT
    J Chem Inf Model; 2011 Jan; 51(1):105-14. PubMed ID: 21133372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Solvation Free Energies Using Electronegativity-Equalization Atomic Charges and a Dense Neural Network: A Generalized-Born Approach.
    Vyboishchikov SF
    J Chem Theory Comput; 2023 Nov; 19(22):8340-8350. PubMed ID: 37962524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration free energies using semiempirical quantum mechanical Hamiltonians and a continuum solvent model with multiple atomic-type parameters.
    Anisimov VM; Cavasotto CN
    J Phys Chem B; 2011 Jun; 115(24):7896-905. PubMed ID: 21585215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate description of intermolecular interactions involving ions using symmetry-adapted perturbation theory.
    Lao KU; Schäffer R; Jansen G; Herbert JM
    J Chem Theory Comput; 2015 Jun; 11(6):2473-86. PubMed ID: 26575547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive Benchmark of Association (Free) Energies of Realistic Host-Guest Complexes.
    Sure R; Grimme S
    J Chem Theory Comput; 2015 Aug; 11(8):3785-801. PubMed ID: 26574460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eliminating Systematic Errors in DFT via Connectivity-Based Hierarchy: Accurate Bond Dissociation Energies of Biodiesel Methyl Esters.
    Debnath S; Sengupta A; Raghavachari K
    J Phys Chem A; 2019 Apr; 123(16):3543-3550. PubMed ID: 30986067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.