These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 32597755)
1. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage. Athukoralage JS; McQuarrie S; Grüschow S; Graham S; Gloster TM; White MF Elife; 2020 Jun; 9():. PubMed ID: 32597755 [TBL] [Abstract][Full Text] [Related]
2. Csx3 is a cyclic oligonucleotide phosphodiesterase associated with type III CRISPR-Cas that degrades the second messenger cA Brown S; Gauvin CC; Charbonneau AA; Burman N; Lawrence CM J Biol Chem; 2020 Oct; 295(44):14963-14972. PubMed ID: 32826317 [TBL] [Abstract][Full Text] [Related]
3. Molecular basis of stepwise cyclic tetra-adenylate cleavage by the type III CRISPR ring nuclease Crn1/Sso2081. Du L; Zhang D; Luo Z; Lin Z Nucleic Acids Res; 2023 Mar; 51(5):2485-2495. PubMed ID: 36807980 [TBL] [Abstract][Full Text] [Related]
4. Fuse to defuse: a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence. Samolygo A; Athukoralage JS; Graham S; White MF Nucleic Acids Res; 2020 Jun; 48(11):6149-6156. PubMed ID: 32347937 [TBL] [Abstract][Full Text] [Related]
5. Structural basis of cyclic oligoadenylate degradation by ancillary Type III CRISPR-Cas ring nucleases. Molina R; Jensen ALG; Marchena-Hurtado J; López-Méndez B; Stella S; Montoya G Nucleic Acids Res; 2021 Dec; 49(21):12577-12590. PubMed ID: 34850143 [TBL] [Abstract][Full Text] [Related]
6. Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems. Rouillon C; Athukoralage JS; Graham S; Grüschow S; White MF Methods Enzymol; 2019; 616():191-218. PubMed ID: 30691643 [TBL] [Abstract][Full Text] [Related]
7. Regulation of cyclic oligoadenylate synthesis by the Nasef M; Muffly MC; Beckman AB; Rowe SJ; Walker FC; Hatoum-Aslan A; Dunkle JA RNA; 2019 Aug; 25(8):948-962. PubMed ID: 31076459 [TBL] [Abstract][Full Text] [Related]
8. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Athukoralage JS; McMahon SA; Zhang C; Grüschow S; Graham S; Krupovic M; Whitaker RJ; Gloster TM; White MF Nature; 2020 Jan; 577(7791):572-575. PubMed ID: 31942067 [TBL] [Abstract][Full Text] [Related]
9. Enzymatic properties of CARF-domain proteins in Ding J; Schuergers N; Baehre H; Wilde A Front Microbiol; 2022; 13():1046388. PubMed ID: 36419420 [TBL] [Abstract][Full Text] [Related]
10. Molecular mechanism of allosteric activation of the CRISPR ribonuclease Csm6 by cyclic tetra-adenylate. Du L; Zhu Q; Lin Z EMBO J; 2024 Jan; 43(2):304-315. PubMed ID: 38177499 [TBL] [Abstract][Full Text] [Related]
11. The SAVED domain of the type III CRISPR protease CalpL is a ring nuclease. Binder SC; Schneberger N; Schmitz M; Engeser M; Geyer M; Rouillon C; Hagelueken G Nucleic Acids Res; 2024 Sep; 52(17):10520-10532. PubMed ID: 39166476 [TBL] [Abstract][Full Text] [Related]
12. The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence. Zhu W; McQuarrie S; Grüschow S; McMahon SA; Graham S; Gloster TM; White MF Nucleic Acids Res; 2021 Mar; 49(5):2777-2789. PubMed ID: 33590098 [TBL] [Abstract][Full Text] [Related]
13. Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6. Garcia-Doval C; Schwede F; Berk C; Rostøl JT; Niewoehner O; Tejero O; Hall J; Marraffini LA; Jinek M Nat Commun; 2020 Mar; 11(1):1596. PubMed ID: 32221291 [TBL] [Abstract][Full Text] [Related]
14. The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling. Athukoralage JS; Graham S; Rouillon C; Grüschow S; Czekster CM; White MF Elife; 2020 Apr; 9():. PubMed ID: 32338598 [TBL] [Abstract][Full Text] [Related]
15. Crystal structures of CRISPR-associated Csx3 reveal a manganese-dependent deadenylation exoribonuclease. Yan X; Guo W; Yuan YA RNA Biol; 2015; 12(7):749-60. PubMed ID: 26106927 [TBL] [Abstract][Full Text] [Related]
16. A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding. Han W; Stella S; Zhang Y; Guo T; Sulek K; Peng-Lundgren L; Montoya G; She Q Nucleic Acids Res; 2018 Nov; 46(19):10319-10330. PubMed ID: 30239876 [TBL] [Abstract][Full Text] [Related]
17. CRISPR antiphage defence mediated by the cyclic nucleotide-binding membrane protein Csx23. Grüschow S; McQuarrie S; Ackermann K; McMahon S; Bode BE; Gloster TM; White MF Nucleic Acids Res; 2024 Apr; 52(6):2761-2775. PubMed ID: 38471818 [TBL] [Abstract][Full Text] [Related]
18. Antiviral type III CRISPR signalling via conjugation of ATP and SAM. Chi H; Hoikkala V; Grüschow S; Graham S; Shirran S; White MF Nature; 2023 Oct; 622(7984):826-833. PubMed ID: 37853119 [TBL] [Abstract][Full Text] [Related]
19. Molecular basis of cyclic tetra-oligoadenylate processing by small standalone CRISPR-Cas ring nucleases. Molina R; Garcia-Martin R; López-Méndez B; Jensen ALG; Ciges-Tomas JR; Marchena-Hurtado J; Stella S; Montoya G Nucleic Acids Res; 2022 Oct; 50(19):11199-11213. PubMed ID: 36271789 [TBL] [Abstract][Full Text] [Related]
20. Cyclic oligoadenylate signalling and regulation by ring nucleases during type III CRISPR defence. Athukoralage JS; White MF RNA; 2021 May; 27(8):855-67. PubMed ID: 33986148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]