BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3259839)

  • 1. Characterization of folate uptake in guinea pig placenta.
    Sweiry JH; Yudilevich DL
    Am J Physiol; 1988 Jun; 254(6 Pt 1):C735-43. PubMed ID: 3259839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of folates at maternal and fetal sides of the placenta: lack of inhibition by methotrexate.
    Sweiry JH; Yudilevich DL
    Biochim Biophys Acta; 1985 Dec; 821(3):497-501. PubMed ID: 4074742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional activity of the reduced folate carrier in KB, MA104, and IGROV-I cells expressing folate-binding protein.
    Westerhof GR; Rijnboutt S; Schornagel JH; Pinedo HM; Peters GJ; Jansen G
    Cancer Res; 1995 Sep; 55(17):3795-802. PubMed ID: 7641196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and metabolism of adenosine in the perfused guinea-pig placenta.
    Wheeler CP; Yudilevich DL
    J Physiol; 1988 Nov; 405():511-26. PubMed ID: 3255799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of insulin, prostaglandin E1 and uptake inhibitors on glucose transport in the perfused guinea-pig placenta.
    Wheeler PD; Yudilevich DL
    J Dev Physiol; 1989 Mar; 11(3):159-69. PubMed ID: 2681387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of choline transport at maternal and fetal interfaces of the perfused guinea-pig placenta.
    Sweiry JH; Yudilevich DL
    J Physiol; 1985 Sep; 366():251-66. PubMed ID: 4057092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine and alanine transport in the perfused guinea-pig placenta.
    Wheeler CP; Yudilevich DL
    Biochim Biophys Acta; 1989 Jan; 978(2):257-66. PubMed ID: 2492434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5,10-Dideazatetrahydrofolic acid (DDATHF) transport in CCRF-CEM and MA104 cell lines.
    Pizzorno G; Cashmore AR; Moroson BA; Cross AD; Smith AK; Marling-Cason M; Kamen BA; Beardsley GP
    J Biol Chem; 1993 Jan; 268(2):1017-23. PubMed ID: 8419310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional aspects of membrane folate receptors in human breast cancer cells with transport-related resistance to methotrexate.
    Pinard MF; Jolivet J; Ratnam M; Kathmann I; Molthoff C; Westerhof R; Schornagel JH; Jansen G
    Cancer Chemother Pharmacol; 1996; 38(3):281-8. PubMed ID: 8646804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric calcium influx and efflux at maternal and fetal sides of the guinea-pig placenta: kinetics and specificity.
    Sweiry JH; Yudilevich DL
    J Physiol; 1984 Oct; 355():295-311. PubMed ID: 6387086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of saturable uptake mechanisms at maternal and fetal sides of the perfused human placenta by rapid paired-tracer dilution: studies with calcium and choline.
    Sweiry JH; Page KR; Dacke CG; Abramovich DR; Yudilevich DL
    J Dev Physiol; 1986 Dec; 8(6):435-45. PubMed ID: 3559059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maternal-to-fetal transfer of 5-methyltetrahydrofolate by the perfused human placental cotyledon: evidence for a concentrative role by placental folate receptors in fetal folate delivery.
    Henderson GI; Perez T; Schenker S; Mackins J; Antony AC
    J Lab Clin Med; 1995 Aug; 126(2):184-203. PubMed ID: 7636392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple membrane transport systems for the uptake of folate-based thymidylate synthase inhibitors.
    Jansen G; Schornagel JH; Westerhof GR; Rijksen G; Newell DR; Jackman AL
    Cancer Res; 1990 Dec; 50(23):7544-8. PubMed ID: 2253202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of folic acid uptake characteristics by human placental choriocarcinoma cells at acidic and physiological pH.
    Keating E; Lemos C; Azevedo I; Martel F
    Can J Physiol Pharmacol; 2006 Feb; 84(2):247-55. PubMed ID: 16900951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anion specificity of the jejunal folate carrier: effects of reduced folate analogues on folate uptake and efflux.
    Schron CM; Washington C; Blitzer BL
    J Membr Biol; 1988 Jun; 102(3):175-83. PubMed ID: 3172179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical studies on PT523, a potent nonpolyglutamatable antifolate, in cultured cells.
    Rhee MS; Galivan J; Wright JE; Rosowsky A
    Mol Pharmacol; 1994 Apr; 45(4):783-91. PubMed ID: 7514264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entry of methotrexate into Streptococcus pneumoniae: a study on a wild-type strain and a methotrexate resistant mutant.
    Trombe MC
    J Gen Microbiol; 1985 Jun; 131(6):1273-8. PubMed ID: 3876407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folate analogues as substrates of mammalian folylpolyglutamate synthetase.
    Schoo MM; Pristupa ZB; Vickers PJ; Scrimgeour KG
    Cancer Res; 1985 Jul; 45(7):3034-41. PubMed ID: 3873989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane transport of natural folates and antifolate compounds in murine L1210 leukemia cells: role of carrier- and receptor-mediated transport systems.
    Westerhof GR; Jansen G; van Emmerik N; Kathmann I; Rijksen G; Jackman AL; Schornagel JH
    Cancer Res; 1991 Oct; 51(20):5507-13. PubMed ID: 1655252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical and growth inhibition studies of methotrexate and aminopterin analogues containing a tetrazole ring in place of the gamma-carboxyl group.
    McGuire JJ; Russell CA; Bolanowska WE; Freitag CM; Jones CS; Kalman TI
    Cancer Res; 1990 Mar; 50(6):1726-31. PubMed ID: 2306727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.