These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 32598420)

  • 1. Solvent effects on Li ion transference number and dynamic ion correlations in glyme- and sulfolane-based molten Li salt solvates.
    Shigenobu K; Dokko K; Watanabe M; Ueno K
    Phys Chem Chem Phys; 2020 Jul; 22(27):15214-15221. PubMed ID: 32598420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anion effects on Li ion transference number and dynamic ion correlations in glyme-Li salt equimolar mixtures.
    Shigenobu K; Shibata M; Dokko K; Watanabe M; Fujii K; Ueno K
    Phys Chem Chem Phys; 2021 Feb; 23(4):2622-2629. PubMed ID: 33475115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Li
    Sudoh T; Shigenobu K; Dokko K; Watanabe M; Ueno K
    Phys Chem Chem Phys; 2022 Jun; 24(23):14269-14276. PubMed ID: 35667383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How efficient is Li
    Dong D; Sälzer F; Roling B; Bedrov D
    Phys Chem Chem Phys; 2018 Nov; 20(46):29174-29183. PubMed ID: 30426990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvate Cation Migration and Ion Correlations in Solvate Ionic Liquids.
    Schmidt F; Schönhoff M
    J Phys Chem B; 2020 Feb; 124(7):1245-1252. PubMed ID: 31990553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of cation-cation, anion-anion and cation-anion correlations in Li salt/glyme mixtures by combining very-low-frequency impedance spectroscopy with diffusion and electrophoretic NMR.
    Pfeifer S; Ackermann F; Sälzer F; Schönhoff M; Roling B
    Phys Chem Chem Phys; 2021 Jan; 23(1):628-640. PubMed ID: 33332521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes.
    Yoshida K; Nakamura M; Kazue Y; Tachikawa N; Tsuzuki S; Seki S; Dokko K; Watanabe M
    J Am Chem Soc; 2011 Aug; 133(33):13121-9. PubMed ID: 21774493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glyme-lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids?
    Ueno K; Yoshida K; Tsuchiya M; Tachikawa N; Dokko K; Watanabe M
    J Phys Chem B; 2012 Sep; 116(36):11323-31. PubMed ID: 22897246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly concentrated LiN(SO
    Ugata Y; Tatara R; Ueno K; Dokko K; Watanabe M
    J Chem Phys; 2020 Mar; 152(10):104502. PubMed ID: 32171228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into the Solvation Structure of Tetraglyme-Based Electrolytes via First-Principles Molecular Dynamics Simulation.
    Sun Y; Hamada I
    J Phys Chem B; 2018 Nov; 122(43):10014-10022. PubMed ID: 30299952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Li(+) Local Structure in Hydrofluoroether Diluted Li-Glyme Solvate Ionic Liquid.
    Saito S; Watanabe H; Ueno K; Mandai T; Seki S; Tsuzuki S; Kameda Y; Dokko K; Watanabe M; Umebayashi Y
    J Phys Chem B; 2016 Apr; 120(13):3378-87. PubMed ID: 26959344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge Transport in [Li(tetraglyme)][bis(trifluoromethane) sulfonimide] Solvate Ionic Liquids: Insight from Molecular Dynamics Simulations.
    Dong D; Bedrov D
    J Phys Chem B; 2018 Nov; 122(43):9994-10004. PubMed ID: 30299097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Evidence for Li Ion Hopping Conduction in Highly Concentrated Sulfolane-Based Liquid Electrolytes.
    Dokko K; Watanabe D; Ugata Y; Thomas ML; Tsuzuki S; Shinoda W; Hashimoto K; Ueno K; Umebayashi Y; Watanabe M
    J Phys Chem B; 2018 Nov; 122(47):10736-10745. PubMed ID: 30403858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Li(+) solvation in glyme-Li salt solvate ionic liquids.
    Ueno K; Tatara R; Tsuzuki S; Saito S; Doi H; Yoshida K; Mandai T; Matsugami M; Umebayashi Y; Dokko K; Watanabe M
    Phys Chem Chem Phys; 2015 Mar; 17(12):8248-57. PubMed ID: 25733406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Li(+) Local Structure in Li-Tetraglyme Solvate Ionic Liquid Revealed by Neutron Total Scattering Experiments with the (6/7)Li Isotopic Substitution Technique.
    Saito S; Watanabe H; Hayashi Y; Matsugami M; Tsuzuki S; Seki S; Canongia Lopes JN; Atkin R; Ueno K; Dokko K; Watanabe M; Kameda Y; Umebayashi Y
    J Phys Chem Lett; 2016 Jul; 7(14):2832-7. PubMed ID: 27388117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does Li-ion transport occur rapidly in localized high-concentration electrolytes?
    Watanabe Y; Ugata Y; Ueno K; Watanabe M; Dokko K
    Phys Chem Chem Phys; 2023 Jan; 25(4):3092-3099. PubMed ID: 36621826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic transport in highly concentrated lithium bis(fluorosulfonyl)amide electrolytes with keto ester solvents: structural implications for ion hopping conduction in liquid electrolytes.
    Kondou S; Thomas ML; Mandai T; Ueno K; Dokko K; Watanabe M
    Phys Chem Chem Phys; 2019 Feb; 21(9):5097-5105. PubMed ID: 30762863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion Transport in Glyme- and Sulfolane-Based Highly Concentrated Electrolytes.
    Shigenobu K; Sudoh T; Murai J; Dokko K; Watanabe M; Ueno K
    Chem Rec; 2023 Aug; 23(8):e202200301. PubMed ID: 36802142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Effects of Solvents on Li-Ion-Hopping Conduction in Highly Concentrated LiBF
    Ugata Y; Sasagawa S; Tatara R; Ueno K; Watanabe M; Dokko K
    J Phys Chem B; 2021 Jun; 125(24):6600-6608. PubMed ID: 34121389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Li-ion hopping conduction in highly concentrated lithium bis(fluorosulfonyl)amide/dinitrile liquid electrolytes.
    Ugata Y; Thomas ML; Mandai T; Ueno K; Dokko K; Watanabe M
    Phys Chem Chem Phys; 2019 May; 21(19):9759-9768. PubMed ID: 31041971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.