These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32598444)

  • 21. Effects of endophytic fungi on the ash dieback pathogen.
    Schlegel M; Dubach V; von Buol L; Sieber TN
    FEMS Microbiol Ecol; 2016 Sep; 92(9):. PubMed ID: 27364360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ability of the ash dieback pathogen to reproduce and to induce damage on its host are controlled by different environmental parameters.
    Marçais B; Giraudel A; Husson C
    PLoS Pathog; 2023 Apr; 19(4):e1010558. PubMed ID: 37079641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyfraxinic Acid, a Phytotoxic Tetrasubstituted Octanoic Acid, Produced by the Ash (
    Masi M; Di Lecce R; Tuzi A; Linaldeddu BT; Montecchio L; Maddau L; Evidente A
    J Agric Food Chem; 2019 Dec; 67(49):13617-13623. PubMed ID: 31661270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease.
    Sambles CM; Salmon DL; Florance H; Howard TP; Smirnoff N; Nielsen LR; McKinney LV; Kjær ED; Buggs RJA; Studholme DJ; Grant M
    Sci Data; 2017 Dec; 4():170190. PubMed ID: 29257137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transformation of European Ash (
    Hebda A; Liszka A; Zgłobicki P; Nawrot-Chorabik K; Lyczakowski JJ
    Plants (Basel); 2021 Nov; 10(11):. PubMed ID: 34834887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rising Out of the Ashes: Additive Genetic Variation for Crown and Collar Resistance to Hymenoscyphus fraxineus in Fraxinus excelsior.
    Muñoz F; Marçais B; Dufour J; Dowkiw A
    Phytopathology; 2016 Dec; 106(12):1535-1543. PubMed ID: 27349738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genomic basis of European ash tree resistance to ash dieback fungus.
    Stocks JJ; Metheringham CL; Plumb WJ; Lee SJ; Kelly LJ; Nichols RA; Buggs RJA
    Nat Ecol Evol; 2019 Dec; 3(12):1686-1696. PubMed ID: 31740845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Possible Biological Control of Ash Dieback Using the Mycoparasite Hymenoscyphus Fraxineus Mitovirus 2.
    Shamsi W; Mittelstrass J; Ulrich S; Kondo H; Rigling D; Prospero S
    Phytopathology; 2024 May; 114(5):1020-1027. PubMed ID: 38114080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endophytic fungi related to the ash dieback causal agent encode signatures of pathogenicity on European ash.
    Rafiqi M; Kosawang C; Peers JA; Jelonek L; Yvanne H; McMullan M; Nielsen LR
    IMA Fungus; 2023 May; 14(1):10. PubMed ID: 37170345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First Report of the Ash Dieback Pathogen Hymenoscyphus pseudoalbidus (Anamorph Chalara fraxinea) on Fraxinus excelsior in Belgium.
    Chandelier A; Delhaye N; Helson M
    Plant Dis; 2011 Feb; 95(2):220. PubMed ID: 30743446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advanced spectroscopy-based phenotyping offers a potential solution to the ash dieback epidemic.
    Villari C; Dowkiw A; Enderle R; Ghasemkhani M; Kirisits T; Kjær ED; Marčiulynienė D; McKinney LV; Metzler B; Muñoz F; Nielsen LR; Pliūra A; Stener LG; Suchockas V; Rodriguez-Saona L; Bonello P; Cleary M
    Sci Rep; 2018 Nov; 8(1):17448. PubMed ID: 30487524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of a Conspecific Mycovirus in Two Closely Related Native and Introduced Fungal Hosts and Evidence for Interspecific Virus Transmission.
    Schoebel CN; Prospero S; Gross A; Rigling D
    Viruses; 2018 Nov; 10(11):. PubMed ID: 30428556
    [No Abstract]   [Full Text] [Related]  

  • 33. Climate change and the ash dieback crisis.
    Goberville E; Hautekèete NC; Kirby RR; Piquot Y; Luczak C; Beaugrand G
    Sci Rep; 2016 Oct; 6():35303. PubMed ID: 27739483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stable overexpression and targeted gene deletion of the causative agent of ash dieback Hymenoscyphus fraxineus.
    Lutz T; Hadeler B; Jaeckel M; Schulz B; Heinze C
    Fungal Biol Biotechnol; 2023 Jan; 10(1):1. PubMed ID: 36639657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback.
    Gross A; Holdenrieder O; Pautasso M; Queloz V; Sieber TN
    Mol Plant Pathol; 2014 Jan; 15(1):5-21. PubMed ID: 24118686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. First Report of the Ash Dieback Pathogen Hymenoscyphus fraxineus in Korea.
    Han JG; Shrestha B; Hosoya T; Lee KH; Sung GH; Shin HD
    Mycobiology; 2014 Dec; 42(4):391-6. PubMed ID: 25606012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ash Dieback and Its Impact in Near-Natural Forest Remnants - A Plant Community-Based Inventory.
    Erfmeier A; Haldan KL; Beckmann LM; Behrens M; Rotert J; Schrautzer J
    Front Plant Sci; 2019; 10():658. PubMed ID: 31178880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Traces of
    Agan A; Tedersoo L; Hanso M; Drenkhan R
    Plant Dis; 2023 Feb; 107(2):344-349. PubMed ID: 35822887
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fungal succession in decomposing ash leaves colonized by the ash dieback pathogen
    Kosawang C; Børja I; Herrero ML; Nagy NE; Nielsen LR; Solheim H; Timmermann V; Hietala AM
    Front Microbiol; 2023; 14():1154344. PubMed ID: 37125194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic prediction of resistance to
    Meger J; Ulaszewski B; Pałucka M; Kozioł C; Burczyk J
    Evol Appl; 2024 May; 17(5):e13694. PubMed ID: 38707993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.