BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32598482)

  • 1. Development of extrinsic innervation in the abdominal intestines of human embryos.
    Kruepunga N; Hikspoors JPJM; Hülsman CJM; Mommen GMC; Köhler SE; Lamers WH
    J Anat; 2020 Oct; 237(4):655-671. PubMed ID: 32598482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extrinsic innervation of the pelvic organs in the lesser pelvis of human embryos.
    Kruepunga N; Hikspoors JPJM; Hülsman CJM; Mommen GMC; Köhler SE; Lamers WH
    J Anat; 2020 Oct; 237(4):672-688. PubMed ID: 32592418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the intrinsic and extrinsic innervation of the gut.
    Uesaka T; Young HM; Pachnis V; Enomoto H
    Dev Biol; 2016 Sep; 417(2):158-67. PubMed ID: 27112528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal Differentiation in Schwann Cell Lineage Underlies Postnatal Neurogenesis in the Enteric Nervous System.
    Uesaka T; Nagashimada M; Enomoto H
    J Neurosci; 2015 Jul; 35(27):9879-88. PubMed ID: 26156989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal coelomic transplants: a novel method for studying enteric nervous system development.
    Nagy N; Goldstein AM
    Cell Tissue Res; 2006 Oct; 326(1):43-55. PubMed ID: 16736197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia.
    Burns AJ; Champeval D; Le Douarin NM
    Dev Biol; 2000 Mar; 219(1):30-43. PubMed ID: 10677253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the sacral neural crest cell contribution to the hindgut enteric nervous system in the mouse embryo.
    Wang X; Chan AK; Sham MH; Burns AJ; Chan WY
    Gastroenterology; 2011 Sep; 141(3):992-1002.e1-6. PubMed ID: 21699792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colonization of the bowel by neural crest-derived cells re-migrating from foregut backtransplanted to vagal or sacral regions of host embryos.
    Rothman TP; Le Douarin NM; Fontaine-Pérus JC; Gershon MD
    Dev Dyn; 1993 Mar; 196(3):217-33. PubMed ID: 8400406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nature of catecholamine-containing neurons in the enteric nervous system in relationship with organogenesis, normal human anatomy and neurodegeneration.
    Natale G; Ryskalin L; Busceti CL; Biagioni F; Fornai F
    Arch Ital Biol; 2017 Sep; 155(3):118-130. PubMed ID: 29220864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gut innervation and enteric nervous system development: a spatial, temporal and molecular tour de force.
    Kang YN; Fung C; Vanden Berghe P
    Development; 2021 Feb; 148(3):. PubMed ID: 33558316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine scale differences within the vagal neural crest for enteric nervous system formation.
    Simkin JE; Zhang D; Stamp LA; Newgreen DF
    Dev Biol; 2019 Feb; 446(1):22-33. PubMed ID: 30448439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enteric neural crest-derived cells and neural stem cells: biology and therapeutic potential.
    Burns AJ; Pasricha PJ; Young HM
    Neurogastroenterol Motil; 2004 Apr; 16 Suppl 1():3-7. PubMed ID: 15065996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enteric glia.
    Gershon MD; Rothman TP
    Glia; 1991; 4(2):195-204. PubMed ID: 1827778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial analysis of multi-species exclusion processes: application to neural crest cell migration in the embryonic gut.
    Binder BJ; Landman KA; Newgreen DF; Simkin JE; Takahashi Y; Zhang D
    Bull Math Biol; 2012 Feb; 74(2):474-90. PubMed ID: 22108739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut.
    Olsson C; Holmberg A; Holmgren S
    J Comp Neurol; 2008 Jun; 508(5):756-70. PubMed ID: 18393294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the sympathetic trunks in human embryos.
    Kruepunga N; Hikspoors JPJM; Hülsman CJM; Mommen GMC; Köhler SE; Lamers WH
    J Anat; 2021 Jul; 239(1):32-45. PubMed ID: 33641166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enteric nervous system development: analysis of the selective developmental potentialities of vagal and sacral neural crest cells using quail-chick chimeras.
    Burns AJ; Le Douarin NM
    Anat Rec; 2001 Jan; 262(1):16-28. PubMed ID: 11146425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of neurospheres from the enteric nervous system.
    Schäfer KH; Hagl CI; Rauch U
    Pediatr Surg Int; 2003 Jul; 19(5):340-4. PubMed ID: 12845455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in ontogeny of the enteric nervous system.
    Burns AJ; Thapar N
    Neurogastroenterol Motil; 2006 Oct; 18(10):876-87. PubMed ID: 16961690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical numbers of neural crest cells are required in the pathways from the neural tube to the foregut to ensure complete enteric nervous system formation.
    Barlow AJ; Wallace AS; Thapar N; Burns AJ
    Development; 2008 May; 135(9):1681-91. PubMed ID: 18385256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.