These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32599008)

  • 21. From Lipids to Inflammation: New Approaches to Reducing Atherosclerotic Risk.
    Shapiro MD; Fazio S
    Circ Res; 2016 Feb; 118(4):732-49. PubMed ID: 26892970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of HDL in plaque stabilization and regression: basic mechanisms and clinical implications.
    Feig JE; Feig JL; Dangas GD
    Coron Artery Dis; 2016 Nov; 27(7):592-603. PubMed ID: 27414247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nutritional effects of cyclodextrins on liver and serum lipids and cecal organic acids in rats.
    Kaewprasert S; Okada M; Aoyama Y
    J Nutr Sci Vitaminol (Tokyo); 2001 Oct; 47(5):335-9. PubMed ID: 11814148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cholesterol efflux and reverse cholesterol transport.
    Favari E; Chroni A; Tietge UJ; Zanotti I; Escolà-Gil JC; Bernini F
    Handb Exp Pharmacol; 2015; 224():181-206. PubMed ID: 25522988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced expression of salusin-β contributes to progression of atherosclerosis in LDL receptor deficient mice.
    Zhou CH; Liu LL; Wu YQ; Song Z; Xing SH
    Can J Physiol Pharmacol; 2012 Apr; 90(4):463-71. PubMed ID: 22462492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Update on the role of neutrophils in atherosclerotic plaque vulnerability.
    Carbone F; Mach F; Montecucco F
    Curr Drug Targets; 2015; 16(4):321-33. PubMed ID: 25382205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular cholesterol efflux mediated by cyclodextrins.
    Kilsdonk EP; Yancey PG; Stoudt GW; Bangerter FW; Johnson WJ; Phillips MC; Rothblat GH
    J Biol Chem; 1995 Jul; 270(29):17250-6. PubMed ID: 7615524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Characteristics and Roles of Advanced Oxidation Protein Products in Atherosclerosis.
    Ou H; Huang Z; Mo Z; Xiao J
    Cardiovasc Toxicol; 2017 Jan; 17(1):1-12. PubMed ID: 27350146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regression of Atherosclerotic Plaques of Cholesterol-Fed Rabbits by Combined Chemotherapy With Paclitaxel and Methotrexate Carried in Lipid Core Nanoparticles.
    Gomes FLT; Maranhão RC; Tavares ER; Carvalho PO; Higuchi ML; Mattos FR; Pitta FG; Hatab SA; Kalil-Filho R; Serrano CV
    J Cardiovasc Pharmacol Ther; 2018 Nov; 23(6):561-569. PubMed ID: 29779420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treatment of atherosclerosis by traditional Chinese medicine: Questions and quandaries.
    Wang C; Niimi M; Watanabe T; Wang Y; Liang J; Fan J
    Atherosclerosis; 2018 Oct; 277():136-144. PubMed ID: 30212682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tocopherols in the Prevention and Treatment of Atherosclerosis and Related Cardiovascular Disease.
    Mathur P; Ding Z; Saldeen T; Mehta JL
    Clin Cardiol; 2015 Sep; 38(9):570-6. PubMed ID: 26272221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New Drugs for Atherosclerosis.
    Bruikman CS; Stoekenbroek RM; Hovingh GK; Kastelein JP
    Can J Cardiol; 2017 Mar; 33(3):350-357. PubMed ID: 27993452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Utility of Anti-Inflammatory Agents in Cardiovascular Disease: A Novel Perspective on the Treatment of Atherosclerosis.
    Kottoor SJ; Arora RR
    J Cardiovasc Pharmacol Ther; 2018 Nov; 23(6):483-493. PubMed ID: 29783850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. microRNAs in lipoprotein metabolism and cardiometabolic disorders.
    Rotllan N; Price N; Pati P; Goedeke L; Fernández-Hernando C
    Atherosclerosis; 2016 Mar; 246():352-60. PubMed ID: 26828754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Latest Updates on Lipid Management.
    Egom EE; Pharithi RB; Hesse S; Starr N; Armstrong R; Sulaiman HM; Gazdikova K; Mozos I; Caprnda M; Kubatka P; Kruzliak P; Khan B; Gaspar L; Maher VMG
    High Blood Press Cardiovasc Prev; 2019 Apr; 26(2):85-100. PubMed ID: 30877603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Affinity-Driven Design of Cargo-Switching Nanoparticles to Leverage a Cholesterol-Rich Microenvironment for Atherosclerosis Therapy.
    Kim H; Kumar S; Kang DW; Jo H; Park JH
    ACS Nano; 2020 Jun; 14(6):6519-6531. PubMed ID: 32343121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease.
    Maguire EM; Pearce SWA; Xiao Q
    Vascul Pharmacol; 2019 Jan; 112():54-71. PubMed ID: 30115528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in therapeutic targeting of inflammation in atherosclerosis.
    Hedin U; Matic LP
    J Vasc Surg; 2019 Mar; 69(3):944-951. PubMed ID: 30591299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cyclodextrin related drug delivery system to promote atherosclerosis regression.
    Zhang L
    Pharmazie; 2020 Dec; 75(12):619-625. PubMed ID: 33303053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunotherapy for the prevention of atherosclerotic cardiovascular disease: Promise and possibilities.
    Khambhati J; Engels M; Allard-Ratick M; Sandesara PB; Quyyumi AA; Sperling L
    Atherosclerosis; 2018 Sep; 276():1-9. PubMed ID: 30006321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.