BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 32599265)

  • 41. Water-fat Dixon cardiac magnetic resonance fingerprinting.
    Jaubert O; Cruz G; Bustin A; Schneider T; Lavin B; Koken P; Hajhosseiny R; Doneva M; Rueckert D; Botnar RM; Prieto C
    Magn Reson Med; 2020 Jun; 83(6):2107-2123. PubMed ID: 31736146
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Clinical feasibility of 3D-QALAS - Single breath-hold 3D myocardial T1- and T2-mapping.
    Kvernby S; Warntjes M; Engvall J; Carlhäll CJ; Ebbers T
    Magn Reson Imaging; 2017 May; 38():13-20. PubMed ID: 27998745
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A streamlined acquisition for mapping baseline brain oxygenation using quantitative BOLD.
    Stone AJ; Blockley NP
    Neuroimage; 2017 Feb; 147():79-88. PubMed ID: 27915118
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D free-breathing cardiac magnetic resonance fingerprinting.
    Cruz G; Jaubert O; Qi H; Bustin A; Milotta G; Schneider T; Koken P; Doneva M; Botnar RM; Prieto C
    NMR Biomed; 2020 Oct; 33(10):e4370. PubMed ID: 32696590
    [TBL] [Abstract][Full Text] [Related]  

  • 45. T2-Imaging to Assess Cerebral Oxygen Extraction Fraction in Carotid Occlusive Disease: Influence of Cerebral Autoregulation and Cerebral Blood Volume.
    Seiler A; Deichmann R; Pfeilschifter W; Hattingen E; Singer OC; Wagner M
    PLoS One; 2016; 11(8):e0161408. PubMed ID: 27560515
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Comparison of Black-blood T
    Yuan J; Patterson AJ; Ruetten PPR; Reid SA; Gillard JH; Graves MJ
    Magn Reson Med Sci; 2019 Jan; 18(1):29-35. PubMed ID: 29515084
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxygen extraction fraction measurement using quantitative susceptibility mapping: Comparison with positron emission tomography.
    Kudo K; Liu T; Murakami T; Goodwin J; Uwano I; Yamashita F; Higuchi S; Wang Y; Ogasawara K; Ogawa A; Sasaki M
    J Cereb Blood Flow Metab; 2016 Aug; 36(8):1424-33. PubMed ID: 26661168
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Towards tumour hypoxia imaging: Incorporating relative oxygen extraction fraction mapping of prostate with multi-parametric quantitative MRI on a 1.5T MR-linac.
    Mesny E; Leporq B; Chapet O; Beuf O
    J Med Imaging Radiat Oncol; 2024 Mar; 68(2):171-176. PubMed ID: 38415384
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of magnetization transfer (MT) influence on quantitative mapping of T
    Radunsky D; Blumenfeld-Katzir T; Volovyk O; Tal A; Barazany D; Tsarfaty G; Ben-Eliezer N
    Magn Reson Med; 2019 Jul; 82(1):145-158. PubMed ID: 30860287
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Myocardial microcirculation in humans--new approaches using MRI].
    Wacker CM; Bauer WR
    Herz; 2003 Mar; 28(2):74-81. PubMed ID: 12669220
    [TBL] [Abstract][Full Text] [Related]  

  • 51. T2 quantification from only proton density and T2-weighted MRI by modelling actual refocusing angles.
    McPhee KC; Wilman AH
    Neuroimage; 2015 Sep; 118():642-50. PubMed ID: 26049150
    [TBL] [Abstract][Full Text] [Related]  

  • 52. K-space trajectories in 3D-GRASE sequence for high resolution structural imaging.
    Cristobal-Huerta A; Poot DHJ; Vogel MW; Krestin GP; Hernandez-Tamames JA
    Magn Reson Imaging; 2018 May; 48():10-19. PubMed ID: 29225108
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D GRASE PROPELLER: improved image acquisition technique for arterial spin labeling perfusion imaging.
    Tan H; Hoge WS; Hamilton CA; Günther M; Kraft RA
    Magn Reson Med; 2011 Jul; 66(1):168-73. PubMed ID: 21254211
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Accelerated 3D-GRASE imaging improves quantitative multiple post labeling delay arterial spin labeling.
    Boland M; Stirnberg R; Pracht ED; Kramme J; Viviani R; Stingl J; Stöcker T
    Magn Reson Med; 2018 Dec; 80(6):2475-2484. PubMed ID: 29770492
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rapid parametric mapping of the longitudinal relaxation time T1 using two-dimensional variable flip angle magnetic resonance imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla.
    Dieringer MA; Deimling M; Santoro D; Wuerfel J; Madai VI; Sobesky J; von Knobelsdorff-Brenkenhoff F; Schulz-Menger J; Niendorf T
    PLoS One; 2014; 9(3):e91318. PubMed ID: 24621588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS.
    Kvernby S; Warntjes MJ; Haraldsson H; Carlhäll CJ; Engvall J; Ebbers T
    J Cardiovasc Magn Reson; 2014 Dec; 16(1):102. PubMed ID: 25526880
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Validation of a new 3D quantitative BOLD based cerebral oxygen extraction mapping.
    Lee H; Xu J; Fernandez-Seara MA; Wehrli FW
    J Cereb Blood Flow Metab; 2024 Jul; 44(7):1184-1198. PubMed ID: 38289876
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An efficient 3D stack-of-stars turbo spin echo pulse sequence for simultaneous T2-weighted imaging and T2 mapping.
    Keerthivasan MB; Saranathan M; Johnson K; Fu Z; Weinkauf CC; Martin DR; Bilgin A; Altbach MI
    Magn Reson Med; 2019 Jul; 82(1):326-341. PubMed ID: 30883879
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lesion load quantification on fast-FLAIR, rapid acquisition relaxation-enhanced, and gradient spin echo brain MRI scans from multiple sclerosis patients.
    Rovaris M; Rocca MA; Yousry I; Yousry TA; Colombo B; Comi G; Filippi M
    Magn Reson Imaging; 1999 Oct; 17(8):1105-10. PubMed ID: 10499672
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Diffusion-prepared 3D gradient spin-echo sequence for improved oscillating gradient diffusion MRI.
    Wu D; Liu D; Hsu YC; Li H; Sun Y; Qin Q; Zhang Y
    Magn Reson Med; 2021 Jan; 85(1):78-88. PubMed ID: 32643240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.