BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32599343)

  • 1. Hiding a plane with a pixel: examining shape-bias in CNNs and the benefit of building in biological constraints.
    Malhotra G; Evans BD; Bowers JS
    Vision Res; 2020 Sep; 174():57-68. PubMed ID: 32599343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A failure to learn object shape geometry: Implications for convolutional neural networks as plausible models of biological vision.
    Heinke D; Wachman P; van Zoest W; Leek EC
    Vision Res; 2021 Dec; 189():81-92. PubMed ID: 34634753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature blindness: A challenge for understanding and modelling visual object recognition.
    Malhotra G; Dujmović M; Bowers JS
    PLoS Comput Biol; 2022 May; 18(5):e1009572. PubMed ID: 35560155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining the Coding Strength of Object Identity and Nonidentity Features in Human Occipito-Temporal Cortex and Convolutional Neural Networks.
    Xu Y; Vaziri-Pashkam M
    J Neurosci; 2021 May; 41(19):4234-4252. PubMed ID: 33789916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthogonal Representations of Object Shape and Category in Deep Convolutional Neural Networks and Human Visual Cortex.
    Zeman AA; Ritchie JB; Bracci S; Op de Beeck H
    Sci Rep; 2020 Feb; 10(1):2453. PubMed ID: 32051467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel feature-scrambling approach reveals the capacity of convolutional neural networks to learn spatial relations.
    Farahat A; Effenberger F; Vinck M
    Neural Netw; 2023 Oct; 167():400-414. PubMed ID: 37673027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training for object recognition with increasing spatial frequency: A comparison of deep learning with human vision.
    Avberšek LK; Zeman A; Op de Beeck H
    J Vis; 2021 Sep; 21(10):14. PubMed ID: 34533580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding transformation tolerant visual object representations in the human brain and convolutional neural networks.
    Xu Y; Vaziri-Pashkam M
    Neuroimage; 2022 Nov; 263():119635. PubMed ID: 36116617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep convolutional models improve predictions of macaque V1 responses to natural images.
    Cadena SA; Denfield GH; Walker EY; Gatys LA; Tolias AS; Bethge M; Ecker AS
    PLoS Comput Biol; 2019 Apr; 15(4):e1006897. PubMed ID: 31013278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Representations of regular and irregular shapes by deep Convolutional Neural Networks, monkey inferotemporal neurons and human judgments.
    Kalfas I; Vinken K; Vogels R
    PLoS Comput Biol; 2018 Oct; 14(10):e1006557. PubMed ID: 30365485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved modeling of human vision by incorporating robustness to blur in convolutional neural networks.
    Jang H; Tong F
    Nat Commun; 2024 Mar; 15(1):1989. PubMed ID: 38443349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer of Learning in the Convolutional Neural Networks on Classifying Geometric Shapes Based on Local or Global Invariants.
    Zheng Y; Huang J; Chen T; Ou Y; Zhou W
    Front Comput Neurosci; 2021; 15():637144. PubMed ID: 33679359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From photos to sketches - how humans and deep neural networks process objects across different levels of visual abstraction.
    Singer JJD; Seeliger K; Kietzmann TC; Hebart MN
    J Vis; 2022 Feb; 22(2):4. PubMed ID: 35129578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From convolutional neural networks to models of higher-level cognition (and back again).
    Battleday RM; Peterson JC; Griffiths TL
    Ann N Y Acad Sci; 2021 Dec; 1505(1):55-78. PubMed ID: 33754368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classifying and segmenting microscopy images with deep multiple instance learning.
    Kraus OZ; Ba JL; Frey BJ
    Bioinformatics; 2016 Jun; 32(12):i52-i59. PubMed ID: 27307644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promoting the Shift From Pixel-Level Correlations to Object Semantics Learning by Rethinking Computer Vision Benchmark Data Sets.
    Osório M; Wichert A
    Neural Comput; 2024 May; ():1-17. PubMed ID: 38776966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do Humans and Deep Convolutional Neural Networks Use Visual Information Similarly for the Categorization of Natural Scenes?
    De Cesarei A; Cavicchi S; Cristadoro G; Lippi M
    Cogn Sci; 2021 Jun; 45(6):e13009. PubMed ID: 34170027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future.
    Lindsay GW
    J Cogn Neurosci; 2021 Sep; 33(10):2017-2031. PubMed ID: 32027584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing Fine Structures of the Retinal Receptive Field by Deep-Learning Networks.
    Yan Q; Zheng Y; Jia S; Zhang Y; Yu Z; Chen F; Tian Y; Huang T; Liu JK
    IEEE Trans Cybern; 2022 Jan; 52(1):39-50. PubMed ID: 32167923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer's disease diagnosis.
    Li A; Li F; Elahifasaee F; Liu M; Zhang L;
    Brain Imaging Behav; 2021 Oct; 15(5):2330-2339. PubMed ID: 33398778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.