These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32599405)

  • 1. Sulfidation of sea urchin-like zinc oxide nanospheres: Kinetics, mechanisms, and impacts on growth of Escherichia coli.
    Qian X; Gu Z; Tang Q; Hong A; Filser J; Sharma VK; Li L
    Sci Total Environ; 2020 Nov; 741():140415. PubMed ID: 32599405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility.
    Ma R; Levard C; Michel FM; Brown GE; Lowry GV
    Environ Sci Technol; 2013 Mar; 47(6):2527-34. PubMed ID: 23425191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical transformations of nanoscale zinc oxide in simulated sweat and its impact on the antibacterial efficacy.
    Qian X; Gu Z; Tang Q; Hong A; Xu Z; Dai Y; Bian X; Lou H; Mortimer M; Baalousha M; Li L
    J Hazard Mater; 2021 May; 410():124568. PubMed ID: 33229268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insight into the ZnO sulfidation reaction: mechanism and kinetics modeling of the ZnS outward growth.
    Neveux L; Chiche D; Pérez-Pellitero J; Favergeon L; Gay AS; Pijolat M
    Phys Chem Chem Phys; 2013 Feb; 15(5):1532-45. PubMed ID: 23238352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Sulfidation on ZnO Nanoparticle Dissolution and Aggregation in Sulfate-Containing Suspensions.
    Rasool K; Lee DS
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7334-40. PubMed ID: 26716331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of zinc oxide nanoparticles transformation in sulfur-containing water on its toxicity to microalgae: Physicochemical analysis, photosynthetic efficiency and potential mechanisms.
    Zhang H; Miao C; Huo Z; Luo T
    Water Res; 2022 Sep; 223():119030. PubMed ID: 36081253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pristine and sulfidized ZnO nanoparticles alter microbial community structure and nitrogen cycling in freshwater lakes.
    Bao S; Xiang D; Xue L; Xian B; Tang W; Fang T
    Environ Pollut; 2022 Feb; 294():118661. PubMed ID: 34896219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of ZnO and ZnS nanoparticles in sewage sludge-amended soil on bacteria, plant and invertebrates.
    Oleszczuk P; Czech B; Kończak M; Bogusz A; Siatecka A; Godlewska P; Wiesner M
    Chemosphere; 2019 Dec; 237():124359. PubMed ID: 31394455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal oxide nanomaterials in seawater: linking physicochemical characteristics with biological response in sea urchin development.
    Fairbairn EA; Keller AA; Mädler L; Zhou D; Pokhrel S; Cherr GN
    J Hazard Mater; 2011 Sep; 192(3):1565-71. PubMed ID: 21775060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of sulfidation of small zinc oxide nanoparticles.
    Banerjee P; Jain PK
    RSC Adv; 2018 Oct; 8(60):34476-34482. PubMed ID: 35548607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of soil bacteria and fungal communities to pristine and sulfidized zinc oxide nanoparticles relative to Zn ions.
    Chen C; Unrine JM; Hu Y; Guo L; Tsyusko OV; Fan Z; Liu S; Wei G
    J Hazard Mater; 2021 Mar; 405():124258. PubMed ID: 33153791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different sizes of ZnO diversely affected the cytogenesis of the sea urchin Paracentrotus lividus.
    Oliviero M; Schiavo S; Rametta G; Miglietta ML; Manzo S
    Sci Total Environ; 2017 Dec; 607-608():176-183. PubMed ID: 28689122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposite effects of the earthworm Eisenia fetida on the bioavailability of Zn in soils amended with ZnO and ZnS nanoparticles.
    Bao S; Huang M; Tang W; Wang T; Xu J; Fang T
    Environ Pollut; 2020 May; 260():114045. PubMed ID: 32045968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of l-Arginine and l-Histidine on the structural, optical and antibacterial properties of Mg doped ZnO nanoparticles tested against extended-spectrum beta-lactamases (ESBLs) producing Escherichia coli.
    Haja Hameed AS; Louis G; Karthikeyan C; Thajuddin N; Ravi G
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():373-382. PubMed ID: 30593947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Natural Organic Matter Properties on the Dissolution Kinetics of Zinc Oxide Nanoparticles.
    Jiang C; Aiken GR; Hsu-Kim H
    Environ Sci Technol; 2015 Oct; 49(19):11476-84. PubMed ID: 26355264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the toxicity and the dissolution rate of zinc oxide nanoparticles using a dual-color Escherichia coli whole-cell bioreporter.
    Kim S; Chae Y; Kang Y; An YJ; Yoon Y
    Chemosphere; 2016 Nov; 163():429-437. PubMed ID: 27565310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of distribution and toxicity of different types of zinc-based nanoparticles.
    Park EJ; Jeong U; Yoon C; Kim Y
    Environ Toxicol; 2017 Apr; 32(4):1363-1374. PubMed ID: 27510841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immune and reproductive system impairment in adult sea urchin exposed to nanosized ZnO via food.
    Manzo S; Schiavo S; Oliviero M; Toscano A; Ciaravolo M; Cirino P
    Sci Total Environ; 2017 Dec; 599-600():9-13. PubMed ID: 28460290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of polyphosphates and orthophosphate on the dissolution and transformation of ZnO nanoparticles.
    Wan B; Yan Y; Tang Y; Bai Y; Liu F; Tan W; Huang Q; Feng X
    Chemosphere; 2017 Jun; 176():255-265. PubMed ID: 28273533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface crystal feature-dependent photoactivity of ZnO-ZnS composite rods
    Liang YC; Wang CC
    RSC Adv; 2018 Jan; 8(9):5063-5070. PubMed ID: 35539554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.