BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 32599503)

  • 1. Oxygen-generating smart hydrogels supporting chondrocytes survival in oxygen-free environments.
    Montesdeoca CYC; Afewerki S; Stocco TD; Corat MAF; de Paula MMM; Marciano FR; Lobo AO
    Colloids Surf B Biointerfaces; 2020 Oct; 194():111192. PubMed ID: 32599503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen-Generating Photo-Cross-Linkable Hydrogels Support Cardiac Progenitor Cell Survival by Reducing Hypoxia-Induced Necrosis.
    Alemdar N; Leijten J; Camci-Unal G; Hjortnaes J; Ribas J; Paul A; Mostafalu P; Gaharwar AK; Qiu Y; Sonkusale S; Liao R; Khademhosseini A
    ACS Biomater Sci Eng; 2017 Sep; 3(9):1964-1971. PubMed ID: 33440552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of gelatin source and photoinitiator type on chondrocyte redifferentiation in gelatin methacryloyl-based tissue-engineered cartilage constructs.
    Pahoff S; Meinert C; Bas O; Nguyen L; Klein TJ; Hutmacher DW
    J Mater Chem B; 2019 Mar; 7(10):1761-1772. PubMed ID: 32254918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen-generating microparticles in chondrocytes-laden hydrogels by facile and versatile click chemistry strategy.
    de Sousa Araújo E; Domingues Stocco T; Fernandes de Sousa G; Afewerki S; Marciano FR; Alexandre Finzi Corat M; Michelle Machado de Paula M; Ferreira Cândido Lima Verde T; Cristina Moreira Silva M; Oliveira Lobo A
    Colloids Surf B Biointerfaces; 2021 Sep; 205():111850. PubMed ID: 34015729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo evaluation of 3D constructs engineered with human iPSC-derived chondrocytes in gelatin methacryloyl hydrogel.
    Agten H; Van Hoven I; Viseu SR; Van Hoorick J; Van Vlierberghe S; Luyten FP; Bloemen V
    Biotechnol Bioeng; 2022 Oct; 119(10):2950-2963. PubMed ID: 35781799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gelatin methacryloyl as environment for chondrocytes and cell delivery to superficial cartilage defects.
    Hölzl K; Fürsatz M; Göcerler H; Schädl B; Žigon-Branc S; Markovic M; Gahleitner C; Hoorick JV; Van Vlierberghe S; Kleiner A; Baudis S; Pauschitz A; Redl H; Ovsianikov A; Nürnberger S
    J Tissue Eng Regen Med; 2022 Feb; 16(2):207-222. PubMed ID: 34861104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Bioprinting of Smart Oxygen-Releasing Cartilage Scaffolds.
    Montesdeoca CYC; Stocco TD; Marciano FR; Webster TJ; Lobo AO
    J Funct Biomater; 2022 Nov; 13(4):. PubMed ID: 36412893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent Incorporation of Heparin Improves Chondrogenesis in Photocurable Gelatin-Methacryloyl Hydrogels.
    Brown GCJ; Lim KS; Farrugia BL; Hooper GJ; Woodfield TBF
    Macromol Biosci; 2017 Dec; 17(12):. PubMed ID: 29068543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Culture of Chondrocytes in Gelatin Hydrogels with Different Stiffness.
    Li X; Chen S; Li J; Wang X; Zhang J; Kawazoe N; Chen G
    Polymers (Basel); 2016 Jul; 8(8):. PubMed ID: 30974547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marine Gelatin-Methacryloyl-Based Hydrogels as Cell Templates for Cartilage Tissue Engineering.
    Machado I; Marques CF; Martins E; Alves AL; Reis RL; Silva TH
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel.
    Xavier Mendes A; Moraes Silva S; O'Connell CD; Duchi S; Quigley AF; Kapsa RMI; Moulton SE
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2279-2295. PubMed ID: 33956434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration.
    Gan D; Xu T; Xing W; Wang M; Fang J; Wang K; Ge X; Chan CW; Ren F; Tan H; Lu X
    J Mater Chem B; 2019 Mar; 7(10):1716-1725. PubMed ID: 32254913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair.
    Han L; Xu J; Lu X; Gan D; Wang Z; Wang K; Zhang H; Yuan H; Weng J
    J Mater Chem B; 2017 Jan; 5(4):731-741. PubMed ID: 32263841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printing and characterization of human nasoseptal chondrocytes laden dual crosslinked oxidized alginate-gelatin hydrogels for cartilage repair approaches.
    Schwarz S; Kuth S; Distler T; Gögele C; Stölzel K; Detsch R; Boccaccini AR; Schulze-Tanzil G
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111189. PubMed ID: 32806255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Oxygen Generation Enhances the SCAP Survival in Hydrogel Constructs.
    Zou T; Jiang S; Zhang Y; Liu J; Yi B; Qi Y; Dissanayaka WL; Zhang C
    J Dent Res; 2021 Sep; 100(10):1127-1135. PubMed ID: 34328028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering.
    Shin SR; Zihlmann C; Akbari M; Assawes P; Cheung L; Zhang K; Manoharan V; Zhang YS; Yüksekkaya M; Wan KT; Nikkhah M; Dokmeci MR; Tang XS; Khademhosseini A
    Small; 2016 Jul; 12(27):3677-89. PubMed ID: 27254107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue.
    Risbud M; Ringe J; Bhonde R; Sittinger M
    Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.
    Navaei A; Saini H; Christenson W; Sullivan RT; Ros R; Nikkhah M
    Acta Biomater; 2016 Sep; 41():133-46. PubMed ID: 27212425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered biomechanical microenvironment of articular chondrocytes based on heterogeneous GelMA hydrogel composites and dynamic mechanical compression.
    Xu W; Zhu J; Cao T; Yang G; Ahmed AAQ; Xiao L
    Biomater Adv; 2023 Oct; 153():213567. PubMed ID: 37540940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.