These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Valorization of groundnut shell via pyrolysis: Product distribution, thermodynamic analysis, kinetic estimation, and artificial neural network modeling. Hai A; Bharath G; Daud M; Rambabu K; Ali I; Hasan SW; Show P; Banat F Chemosphere; 2021 Nov; 283():131162. PubMed ID: 34157626 [TBL] [Abstract][Full Text] [Related]
3. Elucidating the pyrolysis reaction mechanism of Calotropis procera and analysis of pyrolysis products to evaluate its potential for bioenergy and chemicals. Ahmad MS; Liu CG; Nawaz M; Tawab A; Shen X; Shen B; Mehmood MA Bioresour Technol; 2021 Feb; 322():124545. PubMed ID: 33341710 [TBL] [Abstract][Full Text] [Related]
4. Pyrolysis of mustard oil residue: A kinetic and thermodynamic study. Kumar Singh R; Patil T; Pandey D; Sawarkar AN Bioresour Technol; 2021 Nov; 339():125631. PubMed ID: 34332178 [TBL] [Abstract][Full Text] [Related]
5. Non-isothermal thermal decomposition behavior and reaction kinetics of acrylonitrile butadiene styrene (ABS). Xu L; Li S; Zhang Y; Sun W; Pan L; Wang L J Environ Manage; 2023 Dec; 348():119080. PubMed ID: 37827086 [TBL] [Abstract][Full Text] [Related]
6. Pyrolysis Kinetics and Combustion Behaviors of a High-Nitrogen Compound, 4,4'-Azobis(1,2,4-triazole). Pan Q; Zhang H; Guo X; Sun S; Li S Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232615 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamics and Kinetics Parameters of Eichhornia crassipes Biomass for Bioenergy. Afzal I; Ahmad MS; Malik S; Ibrahim M; Al Ayed OS; Qadir G; Al Doghaither H; Gull M Protein Pept Lett; 2018; 25(2):187-194. PubMed ID: 29359651 [TBL] [Abstract][Full Text] [Related]
8. Pyrolytic kinetics, reaction mechanisms and gas emissions of waste automotive paint sludge via TG-FTIR and Py-GC/MS. Tian L; Liu T; Yang J; Yang H; Liu Z; Zhao Y; Huang Q; Huang Z J Environ Manage; 2023 Feb; 328():116962. PubMed ID: 36470002 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic Analysis and Pyrolysis Mechanism of 4,4'-Azobis-1,2,4-triazole. Qin K; Zhu M; Zhang M; Zhang L; Cheng B; Lin Q ACS Omega; 2023 Oct; 8(39):36471-36478. PubMed ID: 37810696 [TBL] [Abstract][Full Text] [Related]
10. A study on catalytic co-pyrolysis of kitchen waste with tire waste over ZSM-5 using TG-FTIR and Py-GC/MS. Chen J; Ma X; Yu Z; Deng T; Chen X; Chen L; Dai M Bioresour Technol; 2019 Oct; 289():121585. PubMed ID: 31207410 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the evolved pyrolytic products and energy potential of Bagasse: experimental, kinetic, thermodynamic and boosted regression trees analysis. Zhang Y; Raashid M; Shen X; Waqas Iqbal M; Ali I; Ahmad MS; Simakov DSA; Elkamel A; Shen B Bioresour Technol; 2024 Feb; 394():130295. PubMed ID: 38184085 [TBL] [Abstract][Full Text] [Related]
12. Thermogravimetric analysis, kinetic study, and pyrolysis-GC/MS analysis of 1,1'-azobis-1,2,3-triazole and 4,4'-azobis-1,2,4-triazole. Jia C; Li Y; Zhang S; Fei T; Pang S Chem Cent J; 2018 Mar; 12(1):22. PubMed ID: 29492772 [TBL] [Abstract][Full Text] [Related]
13. Pyrolytic characteristics of fine materials from municipal solid waste using TG-FTIR, Py-GC/MS, and deep learning approach: Kinetics, thermodynamics, and gaseous products distribution. Lin K; Tian L; Zhao Y; Zhao C; Zhang M; Zhou T Chemosphere; 2022 Apr; 293():133533. PubMed ID: 34998842 [TBL] [Abstract][Full Text] [Related]
15. Kinetics, Thermodynamics, and Volatile Products of Camphorwood Pyrolysis in Inert Atmosphere. Xu X; Pan R; Li P; Chen R Appl Biochem Biotechnol; 2020 Aug; 191(4):1605-1623. PubMed ID: 32193804 [TBL] [Abstract][Full Text] [Related]
16. Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake: part 1. The effects of pyrolysis parameters on the product yields. Sensöz S; Angin D Bioresour Technol; 2008 Sep; 99(13):5492-7. PubMed ID: 18068973 [TBL] [Abstract][Full Text] [Related]
17. Comparative pyrolysis studies of lignocellulosic biomasses: Online gas quantification, kinetics triplets, and thermodynamic parameters of the process. Sangaré D; Bostyn S; Moscosa Santillán M; García-Alamilla P; Belandria V; Gökalp I Bioresour Technol; 2022 Feb; 346():126598. PubMed ID: 34953991 [TBL] [Abstract][Full Text] [Related]
18. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Naqvi SR; Hameed Z; Tariq R; Taqvi SA; Ali I; Niazi MBK; Noor T; Hussain A; Iqbal N; Shahbaz M Waste Manag; 2019 Feb; 85():131-140. PubMed ID: 30803566 [TBL] [Abstract][Full Text] [Related]
19. Thermokinetic analysis and product characterization of Medium Density Fiberboard pyrolysis. Aslan DI; Özoğul B; Ceylan S; Geyikçi F Bioresour Technol; 2018 Jun; 258():105-110. PubMed ID: 29524684 [TBL] [Abstract][Full Text] [Related]
20. Bioenergy potential of Wolffia arrhiza appraised through pyrolysis, kinetics, thermodynamics parameters and TG-FTIR-MS study of the evolved gases. Ahmad MS; Mehmood MA; Liu CG; Tawab A; Bai FW; Sakdaronnarong C; Xu J; Rahimuddin SA; Gull M Bioresour Technol; 2018 Apr; 253():297-303. PubMed ID: 29413995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]