These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Biologically plausible deep learning - But how far can we go with shallow networks? Illing B; Gerstner W; Brea J Neural Netw; 2019 Oct; 118():90-101. PubMed ID: 31254771 [TBL] [Abstract][Full Text] [Related]
5. Accelerating deep learning with memcomputing. Manukian H; Traversa FL; Di Ventra M Neural Netw; 2019 Feb; 110():1-7. PubMed ID: 30458316 [TBL] [Abstract][Full Text] [Related]
6. A more biologically plausible learning rule than backpropagation applied to a network model of cortical area 7a. Mazzoni P; Andersen RA; Jordan MI Cereb Cortex; 1991; 1(4):293-307. PubMed ID: 1822737 [TBL] [Abstract][Full Text] [Related]
7. Equivalence of backpropagation and contrastive Hebbian learning in a layered network. Xie X; Seung HS Neural Comput; 2003 Feb; 15(2):441-54. PubMed ID: 12590814 [TBL] [Abstract][Full Text] [Related]
8. Learning in the machine: Recirculation is random backpropagation. Baldi P; Sadowski P Neural Netw; 2018 Dec; 108():479-494. PubMed ID: 30317133 [TBL] [Abstract][Full Text] [Related]
9. Novel deep neural network based pattern field classification architectures. Huang K; Zhang S; Zhang R; Hussain A Neural Netw; 2020 Jul; 127():82-95. PubMed ID: 32344155 [TBL] [Abstract][Full Text] [Related]
10. The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding. Testolin A; De Filippo De Grazia M; Zorzi M Front Comput Neurosci; 2017; 11():13. PubMed ID: 28377709 [TBL] [Abstract][Full Text] [Related]
11. Deep neural mapping support vector machines. Li Y; Zhang T Neural Netw; 2017 Sep; 93():185-194. PubMed ID: 28646763 [TBL] [Abstract][Full Text] [Related]
12. Sign backpropagation: An on-chip learning algorithm for analog RRAM neuromorphic computing systems. Zhang Q; Wu H; Yao P; Zhang W; Gao B; Deng N; Qian H Neural Netw; 2018 Dec; 108():217-223. PubMed ID: 30216871 [TBL] [Abstract][Full Text] [Related]
13. Training Deep Spiking Neural Networks Using Backpropagation. Lee JH; Delbruck T; Pfeiffer M Front Neurosci; 2016; 10():508. PubMed ID: 27877107 [TBL] [Abstract][Full Text] [Related]
14. Using the EM algorithm to train neural networks: misconceptions and a new algorithm for multiclass classification. Ng SK; McLachlan GJ IEEE Trans Neural Netw; 2004 May; 15(3):738-49. PubMed ID: 15384560 [TBL] [Abstract][Full Text] [Related]
15. Dynamical analysis of contrastive divergence learning: Restricted Boltzmann machines with Gaussian visible units. Karakida R; Okada M; Amari S Neural Netw; 2016 Jul; 79():78-87. PubMed ID: 27131468 [TBL] [Abstract][Full Text] [Related]
16. Performance evaluation of multilayer perceptrons in signal detection and classification. Michalopoulou ZH; Nolte LW; Alexandrou D IEEE Trans Neural Netw; 1995; 6(2):381-6. PubMed ID: 18263320 [TBL] [Abstract][Full Text] [Related]
17. Supervised Learning in Neural Networks: Feedback-Network-Free Implementation and Biological Plausibility. Lin F IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7888-7898. PubMed ID: 34181554 [TBL] [Abstract][Full Text] [Related]
18. Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation. Scellier B; Bengio Y Front Comput Neurosci; 2017; 11():24. PubMed ID: 28522969 [TBL] [Abstract][Full Text] [Related]
19. Synapse cell optimization and back-propagation algorithm implementation in a domain wall synapse based crossbar neural network for scalable on-chip learning. Kaushik D; Sharda J; Bhowmik D Nanotechnology; 2020 Sep; 31(36):364004. PubMed ID: 32454478 [TBL] [Abstract][Full Text] [Related]
20. Approximate, computationally efficient online learning in Bayesian spiking neurons. Kuhlmann L; Hauser-Raspe M; Manton JH; Grayden DB; Tapson J; van Schaik A Neural Comput; 2014 Mar; 26(3):472-96. PubMed ID: 24320847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]