These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32599568)

  • 1. Effect of Ni doping on stabilization of Sm(Co
    Gavrikov IS; Karpenkov DY; Zheleznyi MV; Kamynin AV; Khotulev ES; Bazlov AI
    J Phys Condens Matter; 2020 Jul; 32(42):. PubMed ID: 32599568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Zr, V, Nb, Mo, and Ta substitutions on magnetic properties and microstructure of melt-spun SmCo
    Fukuzaki T; Iwane H; Abe K; Doi T; Tamura R; Oikawa T
    J Appl Phys; 2014 May; 115(17):17A760. PubMed ID: 24753631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of (Sm,Zr)(Fe,Co)
    Saito T
    Heliyon; 2022 Jun; 8(6):e09612. PubMed ID: 35711986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic properties, phase evolution, and microstructure of melt spun Hf-substituted Sm(Co0.97Hf0.03)(x)Cy (x = 5-9; y = 0-0.1) nanocomposites.
    Chang HW; Guo CS; Hsieh CC; Chang WC
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2722-5. PubMed ID: 21449462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase Formation, Microstructure, and Magnetic Properties of Nd
    Ke Q; Dai F; Li S; Rong M; Yao Q; Wang J
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Cu Substitution and Heat Treatment on Phase Formation and Magnetic Properties of Sm
    Dai F; Liu P; Luo L; Chen D; Yao Q; Wang J
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hard Magnetic Properties and the Features of Nanostructure of High-Temperature Sm-Co-Fe-Cu-Zr Magnet with Abnormal Temperature Dependence of Coercivity.
    Golovnia OA; Popov AG; Mushnikov NV; Protasov AV; Pradeep KG; Ogurtsov AV; Taranov DV; Tishin AM
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a Fe-Based Soft Magnetic Alloy System with High Saturation Magnetization.
    Han BK; Kim S; Choi-Yim H
    J Nanosci Nanotechnol; 2016 May; 16(5):5274-8. PubMed ID: 27483914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles study of structures, electronic and elastic properties of LaNi
    Yan J; Zhao X; Zhang C; Li S
    J Mol Graph Model; 2019 Jul; 90():258-264. PubMed ID: 31112820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single domain SmCo5@Co exchange-coupled magnets prepared from core/shell Sm[Co(CN)6]·4H2O@GO particles: a novel chemical approach.
    Yang C; Jia L; Wang S; Gao C; Shi D; Hou Y; Gao S
    Sci Rep; 2013 Dec; 3():3542. PubMed ID: 24356309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remarkable Bifunctional Oxygen and Hydrogen Evolution Electrocatalytic Activities with Trace-Level Fe Doping in Ni- and Co-Layered Double Hydroxides for Overall Water-Splitting.
    Rajeshkhanna G; Singh TI; Kim NH; Lee JH
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42453-42468. PubMed ID: 30430830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Co-Doping on Magnetic Properties and Magnetocaloric Effect of Fe-Co-Zr-Cu-B Melt-Spun Ribbons.
    Yen NH; Ha NH; Thanh PT; Ngoc NH; Thanh TD; Dan NH
    J Nanosci Nanotechnol; 2021 Apr; 21(4):2552-2557. PubMed ID: 33500074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3d Metal Doping of Core@Shell Wüstite@ferrite Nanoparticles as a Promising Route toward Room Temperature Exchange Bias Magnets.
    Muzzi B; Albino M; Petrecca M; Innocenti C; Fernández CJ; Bertoni G; Marquina C; Ibarra MR; Sangregorio C
    Small; 2022 Apr; 18(16):e2107426. PubMed ID: 35274450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of structural parameters on magnetoresistive properties of CuFeNi melt spun ribbons.
    Cazottes S; Danoix F; Fnidiki A; Lemarchand D; Baricco M
    Ultramicroscopy; 2009 Apr; 109(5):625-30. PubMed ID: 19168287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Production of Cost-Effective Modification of SmCo
    Gjoka M; Sarafidis C; Giaremis S
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient Distribution of Martensite Phase in Melt-Spun Ribbons of a Fe-Ni-Ti-Al Alloy.
    Bondar V; Danilchenko V; Dzevin I
    Nanoscale Res Lett; 2016 Dec; 11(1):96. PubMed ID: 26897002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect of trivalent (Gd
    Bharadwaj PSJ; Kundu S; Kollipara VS; Varma KBR
    RSC Adv; 2020 Jun; 10(37):22183-22195. PubMed ID: 35516621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of anisotropy energy of SmCo
    Haider SK; Ngo HM; Kim D; Kang YS
    Sci Rep; 2021 May; 11(1):10063. PubMed ID: 33980904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Syntheses, structures, and magnetic properties of acetato- and diphenolato-bridged 3d-4f binuclear complexes [M(3-MeOsaltn)(MeOH)x(ac)Ln(hfac)2] (M = Zn(II), Cu(II), Ni(II), Co(II); Ln = La(III), Gd(III), Tb(III), Dy(III); 3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato; ac = acetato; hfac = hexafluoroacetylacetonato; x = 0 or 1).
    Towatari M; Nishi K; Fujinami T; Matsumoto N; Sunatsuki Y; Kojima M; Mochida N; Ishida T; Re N; Mrozinski J
    Inorg Chem; 2013 May; 52(10):6160-78. PubMed ID: 23646986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of Alloys for (Sm,Zr)(Co,Cu,Fe)
    Dormidontov AG; Kolchugina NB; Dormidontov NA; Zheleznyi MV; Bakulina AS; Prokofev PA; Andreenko AS; Milov YV; Sysoev NN
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.