These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 32599801)
1. Passive Sensing of Prediction of Moment-To-Moment Depressed Mood among Undergraduates with Clinical Levels of Depression Sample Using Smartphones. Jacobson NC; Chung YJ Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32599801 [TBL] [Abstract][Full Text] [Related]
2. Tracking and Monitoring Mood Stability of Patients With Major Depressive Disorder by Machine Learning Models Using Passive Digital Data: Prospective Naturalistic Multicenter Study. Bai R; Xiao L; Guo Y; Zhu X; Li N; Wang Y; Chen Q; Feng L; Wang Y; Yu X; Xie H; Wang G JMIR Mhealth Uhealth; 2021 Mar; 9(3):e24365. PubMed ID: 33683207 [TBL] [Abstract][Full Text] [Related]
3. Digital biomarkers of anxiety disorder symptom changes: Personalized deep learning models using smartphone sensors accurately predict anxiety symptoms from ecological momentary assessments. Jacobson NC; Bhattacharya S Behav Res Ther; 2022 Feb; 149():104013. PubMed ID: 35030442 [TBL] [Abstract][Full Text] [Related]
4. Using Smartphone Sensor Paradata and Personalized Machine Learning Models to Infer Participants' Well-being: Ecological Momentary Assessment. Hart A; Reis D; Prestele E; Jacobson NC J Med Internet Res; 2022 Apr; 24(4):e34015. PubMed ID: 35482397 [TBL] [Abstract][Full Text] [Related]
5. Association of Neural and Emotional Impacts of Reward Prediction Errors With Major Depression. Rutledge RB; Moutoussis M; Smittenaar P; Zeidman P; Taylor T; Hrynkiewicz L; Lam J; Skandali N; Siegel JZ; Ousdal OT; Prabhu G; Dayan P; Fonagy P; Dolan RJ JAMA Psychiatry; 2017 Aug; 74(8):790-797. PubMed ID: 28678984 [TBL] [Abstract][Full Text] [Related]
6. The accuracy of passive phone sensors in predicting daily mood. Pratap A; Atkins DC; Renn BN; Tanana MJ; Mooney SD; Anguera JA; Areán PA Depress Anxiety; 2019 Jan; 36(1):72-81. PubMed ID: 30129691 [TBL] [Abstract][Full Text] [Related]
7. Prediction of Diagnosis and Treatment Response in Adolescents With Depression by Using a Smartphone App and Deep Learning Approaches: Usability Study. Kim JS; Wang B; Kim M; Lee J; Kim H; Roh D; Lee KH; Hong SB; Lim JS; Kim JW; Ryan N JMIR Form Res; 2023 May; 7():e45991. PubMed ID: 37223978 [TBL] [Abstract][Full Text] [Related]
8. Digital Biomarkers of Social Anxiety Severity: Digital Phenotyping Using Passive Smartphone Sensors. Jacobson NC; Summers B; Wilhelm S J Med Internet Res; 2020 May; 22(5):e16875. PubMed ID: 32348284 [TBL] [Abstract][Full Text] [Related]
9. From mood to use: Using ecological momentary assessments to examine how anhedonia and depressed mood impact cannabis use in a depressed sample. Collins AC; Lekkas D; Struble CA; Trudeau BM; Jewett AD; Griffin TZ; Nemesure MD; Price GD; Heinz MV; Nepal S; Pillai A; Mackin DM; Campbell AT; Budney AJ; Jacobson NC Psychiatry Res; 2024 Sep; 339():116110. PubMed ID: 39079375 [TBL] [Abstract][Full Text] [Related]
10. Remote assessment of disease and relapse in major depressive disorder (RADAR-MDD): a multi-centre prospective cohort study protocol. Matcham F; Barattieri di San Pietro C; Bulgari V; de Girolamo G; Dobson R; Eriksson H; Folarin AA; Haro JM; Kerz M; Lamers F; Li Q; Manyakov NV; Mohr DC; Myin-Germeys I; Narayan V; Bwjh P; Ranjan Y; Rashid Z; Rintala A; Siddi S; Simblett SK; Wykes T; Hotopf M; BMC Psychiatry; 2019 Feb; 19(1):72. PubMed ID: 30777041 [TBL] [Abstract][Full Text] [Related]
11. Smartphone assessment uncovers real-time relationships between depressed mood and daily functional behaviors after stroke. Bui Q; Kaufman KJ; Munsell EG; Lenze EJ; Lee JM; Mohr DC; Fong MW; Metts CL; Tomazin SE; Pham V; Wong AW J Telemed Telecare; 2024 Jun; 30(5):871-884. PubMed ID: 35549589 [TBL] [Abstract][Full Text] [Related]
12. The utility of smartphone-based, ecological momentary assessment for depressive symptoms. Yim SJ; Lui LMW; Lee Y; Rosenblat JD; Ragguett RM; Park C; Subramaniapillai M; Cao B; Zhou A; Rong C; Lin K; Ho RC; Coles AS; Majeed A; Wong ER; Phan L; Nasri F; McIntyre RS J Affect Disord; 2020 Sep; 274():602-609. PubMed ID: 32663993 [TBL] [Abstract][Full Text] [Related]
13. Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study. Lee HJ; Cho CH; Lee T; Jeong J; Yeom JW; Kim S; Jeon S; Seo JY; Moon E; Baek JH; Park DY; Kim SJ; Ha TH; Cha B; Kang HJ; Ahn YM; Lee Y; Lee JB; Kim L Psychol Med; 2023 Sep; 53(12):5636-5644. PubMed ID: 36146953 [TBL] [Abstract][Full Text] [Related]
14. Mobile Phone-Based Unobtrusive Ecological Momentary Assessment of Day-to-Day Mood: An Explorative Study. Asselbergs J; Ruwaard J; Ejdys M; Schrader N; Sijbrandij M; Riper H J Med Internet Res; 2016 Mar; 18(3):e72. PubMed ID: 27025287 [TBL] [Abstract][Full Text] [Related]
15. Directional associations among real-time activity, sleep, mood, and daytime symptoms in major depressive disorder using actigraphy and ecological momentary assessment. Poon CY; Cheng YC; Wong VW; Tam HK; Chung KF; Yeung WF; Ho FY Behav Res Ther; 2024 Feb; 173():104464. PubMed ID: 38159415 [TBL] [Abstract][Full Text] [Related]
16. Utilizing daily mood diaries and wearable sensor data to predict depression and suicidal ideation among medical interns. Horwitz A; Czyz E; Al-Dajani N; Dempsey W; Zhao Z; Nahum-Shani I; Sen S J Affect Disord; 2022 Sep; 313():1-7. PubMed ID: 35764227 [TBL] [Abstract][Full Text] [Related]
17. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone. Kim H; Lee S; Lee S; Hong S; Kang H; Kim N JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14149. PubMed ID: 31621642 [TBL] [Abstract][Full Text] [Related]
18. Letter to the Editor: CONVERGENCES AND DIVERGENCES IN THE ICD-11 VS. DSM-5 CLASSIFICATION OF MOOD DISORDERS. Cerbo AD Turk Psikiyatri Derg; 2021; 32(4):293-295. PubMed ID: 34964106 [TBL] [Abstract][Full Text] [Related]